-
Bài 1 trang 23 SBT toán 12 - Chân trời sáng tạo
Chọn đáp án đúng. Biết rằng \(f'\left( x \right) = 8{{\rm{x}}^3} - 4x + 2\) và \(f\left( 1 \right) = 4\). Hàm số \(f\left( x \right)\) là A. \(2{x^4} - 2{x^2} + x + 4\). B. \(2{x^4} - 2{x^2} + 2x + 2\). C. \(8{x^4} - 4{x^2} + x\). D. \(8{x^4} - 4{x^2} + x + 4\).
Xem lời giải -
Bài 2 trang 23 SBT toán 12 - Chân trời sáng tạo
Chọn đáp án đúng. Hàm số \(y = f\left( x \right)\) có đồ thị đi qua điểm \(\left( {0;2} \right)\) và \(f'\left( x \right) = \cos x - \sin x\). Giá trị của \(f\left( \pi \right)\) là A. ‒1. B. 1. C. 4. D. 0.
Xem lời giải -
Bài 3 trang 23 SBT toán 12 - Chân trời sáng tạo
Chọn đáp án đúng. Phát biểu nào sau đây đúng? A. (int {{3^{2{rm{x}}}}dx} = {9^x}.ln 9 + C). B. (int {{3^{2{rm{x}}}}dx} = frac{{{9^x}}}{{2ln 3}} + C). C. (int {{3^{2{rm{x}}}}dx} = {left( {frac{{{3^x}}}{{ln 3}}} right)^2} + C). D. (int {{3^{2{rm{x}}}}dx} = frac{{{3^{2x}}}}{{ln 3}} + C).
Xem lời giải -
Bài 4 trang 23 SBT toán 12 - Chân trời sáng tạo
Chọn đáp án đúng. Cho hàm số \(f\left( x \right) = 4\sqrt[3]{x}\). Giá trị của \(\int\limits_1^3 {f\left( x \right)dx} - \int\limits_8^3 {f\left( x \right)dx} \) bằng A. 45. B. 80. C. 15. D. \(18\sqrt[3]{3} - 51\).
Xem lời giải -
Bài 5 trang 23 SBT toán 12 - Chân trời sáng tạo
Chọn đáp án đúng. Cho hàm số (fleft( x right) = 3{rm{x}} - 1). Biết rằng ({rm{a}}) là số thoả mãn (intlimits_0^1 {{f^2}left( x right)dx} = a{left[ {intlimits_0^1 {fleft( x right)dx} } right]^2}). Giá trị của ({rm{a}}) là A. 2. B. (frac{1}{4}). C. 4. D. (frac{1}{2}).
Xem lời giải -
Bài 6 trang 23 SBT toán 12 - Chân trời sáng tạo
Chọn đáp án đúng. Đồ thị của hàm số \(y = f\left( x \right)\) đi qua điểm \(\left( {1;1} \right)\) và có hệ số góc của tiếp tuyến tại các điểm \(\left( {x;f\left( x \right)} \right)\) là \(1 - 4x\). Giá trị của \(f\left( 3 \right)\) là A. ‒12. B. ‒13. C. ‒15. D. ‒30.
Xem lời giải -
Bài 7 trang 24 SBT toán 12 - Chân trời sáng tạo
Chọn đáp án đúng. Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {1;3} \right]\) và thoả mãn \(\int\limits_1^3 {\left[ {3{x^2} - 2f'\left( x \right)} \right]dx} = 4;f\left( 1 \right) = - 2\). Giá trị \(f\left( 3 \right)\) là A. 9. B. 11. C. ‒13. D. 19.
Xem lời giải -
Bài 8 trang 24 SBT toán 12 - Chân trời sáng tạo
Chọn đáp án đúng. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\) là A. 1. B. 3. C. \(2\ln 2 - 1\). D. \(3 - 4\ln 2\).
Xem lời giải -
Bài 9 trang 24 SBT toán 12 - Chân trời sáng tạo
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (K) là một khoảng trên (mathbb{R}); (Fleft( x right)) là một nguyên hàm của hàm số (fleft( x right)) trên (K); (Gleft( x right)) là một nguyên hàm của hàm số (gleft( x right)) trên (K). a) Nếu (Fleft( x right) = Gleft( x right)) thì (fleft( x right) = gleft( x right)). b) Nếu (fleft( x right) = gleft( x right)) thì (Fleft( x right) = Gleft( x right)). c) (int {fleft( x right)dx} = Fleft( x r
Xem lời giải -
Bài 10 trang 24 SBT toán 12 - Chân trời sáng tạo
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (y = fleft( x right)) là hàm số bậc hai có đồ thị như Hình 1. Gọi (S) là diện tích của hình phẳng giới hạn bởi đồ thị của hàm số (y = fleft( x right)) và trục hoành. a) (fleft( x right) = 4 - 2{x^2}). b) (S = intlimits_{ - 2}^2 {left| {fleft( x right)} right|dx} ). c) (S = intlimits_{ - 2}^2 {fleft( x right)dx} ). d) (S = frac{{16}}{3}).
Xem lời giải