Giải bài 4 trang 23 sách bài tập toán 12 - Chân trời sáng tạoChọn đáp án đúng. Cho hàm số \(f\left( x \right) = 4\sqrt[3]{x}\). Giá trị của \(\int\limits_1^3 {f\left( x \right)dx} - \int\limits_8^3 {f\left( x \right)dx} \) bằng A. 45. B. 80. C. 15. D. \(18\sqrt[3]{3} - 51\). Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Chọn đáp án đúng. Cho hàm số \(f\left( x \right) = 4\sqrt[3]{x}\). Giá trị của \(\int\limits_1^3 {f\left( x \right)dx} - \int\limits_8^3 {f\left( x \right)dx} \) bằng A. 45. B. 80. C. 15. D. \(18\sqrt[3]{3} - 51\). Phương pháp giải - Xem chi tiết ‒ Sử dụng tính chất: • \(\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} \). • \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \left( {a < c < b} \right)\). ‒ Sử dụng công thức: \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\). Lời giải chi tiết \(\begin{array}{l}\int\limits_1^3 {f\left( x \right)dx} - \int\limits_8^3 {f\left( x \right)dx} = \int\limits_1^3 {f\left( x \right)dx} + \int\limits_3^8 {f\left( x \right)dx} = \int\limits_1^8 {f\left( x \right)dx} = \int\limits_1^8 {4\sqrt[3]{x}dx} = \int\limits_1^8 {4.{x^{\frac{1}{3}}}dx} \\ = \left. {\frac{{4.{x^{\frac{4}{3}}}}}{{\frac{4}{3}}}} \right|_1^8 = \left. {3{x^{\frac{4}{3}}}} \right|_1^8 = 45\end{array}\) Chọn A.
Quảng cáo
|