Giải bài 10 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (y = fleft( x right)) là hàm số bậc hai có đồ thị như Hình 1. Gọi (S) là diện tích của hình phẳng giới hạn bởi đồ thị của hàm số (y = fleft( x right)) và trục hoành. a) (fleft( x right) = 4 - 2{x^2}). b) (S = intlimits_{ - 2}^2 {left| {fleft( x right)} right|dx} ). c) (S = intlimits_{ - 2}^2 {fleft( x right)dx} ). d) (S = frac{{16}}{3}).

Quảng cáo

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Cho \(y = f\left( x \right)\) là hàm số bậc hai có đồ thị như Hình 1. Gọi \(S\) là diện tích của hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\) và trục hoành.

a) \(f\left( x \right) = 4 - 2{x^2}\).

b) \(S = \int\limits_{ - 2}^2 {\left| {f\left( x \right)} \right|dx} \).

c) \(S = \int\limits_{ - 2}^2 {f\left( x \right)dx} \).

d) \(S = \frac{{16}}{3}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).

Lời giải chi tiết

Giả sử hàm số có dạng \(f\left( x \right) = a{x^2} + c\left( {a < 0} \right)\).

Đồ thị hàm số đi qua điểm \(\left( {0;4} \right)\) nên ta có \(c = 4\).

Đồ thị hàm số đi qua điểm \(\left( {2;0} \right)\) nên ta có \(a{.2^2} + 4 = 0 \Leftrightarrow a =  - 1\).

Vậy hàm số đó là \(f\left( x \right) =  - {x^2} + 4\). Vậy a) sai.

Ta có \(S = \int\limits_{ - 2}^2 {\left| {f\left( x \right)} \right|dx}  = \int\limits_{ - 2}^2 {f\left( x \right)dx}  = \int\limits_{ - 2}^2 {\left( { - {x^2} + 4} \right)dx}  = \left. {\left( { - \frac{{{x^3}}}{3} + 4x} \right)} \right|_{ - 2}^2 = \frac{{32}}{3}\).

Vậy b) đúng, c) đúng, d) sai.

a) S.

b) Đ.

c) Đ.

d) S.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close