Giải bài 10 trang 34 sách bài tập toán 12 - Chân trời sáng tạoĐồ thị hàm số \(y = \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}}\) có tâm đối xứng là điểm: A. \(\left( { - 1; - 2} \right)\). B. \(\left( { - 2; - 1} \right)\). C. \(\left( { - 1; - 1} \right)\). D. \(\left( { - 2; - 2} \right)\). Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Đồ thị hàm số \(y = \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}}\) có tâm đối xứng là điểm: A. \(\left( { - 1; - 2} \right)\). B. \(\left( { - 2; - 1} \right)\). C. \(\left( { - 1; - 1} \right)\). D. \(\left( { - 2; - 2} \right)\). Phương pháp giải - Xem chi tiết ‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \) thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng. ‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang. Lời giải chi tiết Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\). Ta có: • \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}} = - \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}} = + \infty \) Vậy \(x = - 1\) là tiệm cận đứng của đồ thị hàm số đã cho. • \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}} = - 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}} = - 2\) Vậy \(y = - 2\) là tiệm cận ngang của đồ thị hàm số đã cho. Vậy \(I\left( { - 1; - 2} \right)\) là tâm đối xứng của đồ thị hàm số đã cho. Chọn A.
Quảng cáo
|