Giải bài 8 trang 26 sách bài tập toán 12 - Chân trời sáng tạoCho (D) là hình phẳng giới hạn bởi đồ thị của hàm số (y = sqrt x ), trục hoành và đường thẳng (x = 4). Đường thẳng (x = aleft( {0 < a < 4} right)) chia (D) thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của (a). Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho \(D\) là hình phẳng giới hạn bởi đồ thị của hàm số \(y = \sqrt x \), trục hoành và đường thẳng \(x = 4\). Đường thẳng \(x = a\left( {0 < a < 4} \right)\) chia \(D\) thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của \(a\). Phương pháp giải - Xem chi tiết Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \). Lời giải chi tiết Diện tích phần bên trái: \({S_1} = \int\limits_0^a {\left| {\sqrt x } \right|dx} = \int\limits_0^a {{x^{\frac{1}{2}}}dx} = \left. {\frac{2}{3}{x^{\frac{3}{2}}}} \right|_0^a = \frac{2}{3}{a^{\frac{3}{2}}}\). Diện tích hình phẳng \(D\): \({S_D} = \int\limits_0^4 {\left| {\sqrt x } \right|dx} = \int\limits_0^4 {{x^{\frac{1}{2}}}dx} = \left. {\frac{2}{3}{x^{\frac{3}{2}}}} \right|_0^4 = \frac{{16}}{3}\). Đường thẳng \(x = a\left( {0 < a < 4} \right)\) chia \(D\) thành hai phần có diện tích bằng nhau nên ta có: \({S_1} = \frac{1}{2}{S_D} \Leftrightarrow \frac{2}{3}{a^{\frac{3}{2}}} = \frac{1}{2}.\frac{{16}}{3} \Leftrightarrow {a^{\frac{3}{2}}} = 4 \Leftrightarrow {a^3} = 16 \Leftrightarrow a = 2\sqrt[3]{2}\).
Quảng cáo
|