Bài 5.48 trang 207 SBT đại số và giải tích 11

Giải bài 5.48 trang 207 sách bài tập đại số và giải tích 11. Giải phương trình...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải phương trình \(f'\left( x \right) = 0,\) biết rằng

LG a

\(f\left( x \right) = 3x + {{60} \over x} - {{64} \over {{x^3}}} + 5\)

Lời giải chi tiết:

\(\begin{array}{l}
f'\left( x \right) = 3 - \dfrac{{60}}{{{x^2}}} - \dfrac{{64.\left( { - 3{x^2}} \right)}}{{{x^6}}}\\
= 3 - \dfrac{{60}}{{{x^2}}} + \dfrac{{192}}{{{x^4}}}\\
= \dfrac{{3{x^4} - 60{x^2} + 192}}{{{x^4}}}\\
f'\left( x \right) = 0\\
\Leftrightarrow \dfrac{{3{x^4} - 60{x^2} + 192}}{{{x^4}}} = 0\\
\Leftrightarrow 3{x^4} - 60{x^2} + 192 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} = 16\\
{x^2} = 4
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \pm 4\\
x = \pm 2
\end{array} \right.
\end{array}\)

Vậy \(x\in\left\{ { \pm 2; \pm 4} \right\}.\)

LG b

\(\displaystyle f\left( x \right) = {{\sin 3x} \over 3} + \cos x\) \(\displaystyle - \sqrt 3 \left( {\sin x + {{\cos 3x} \over 3}} \right).\)

Lời giải chi tiết:

\(\begin{array}{l}
f'\left( x \right)\\
= \frac{{3\cos 3x}}{3} - \sin x - \sqrt 3 \left( {\cos x + \frac{{ - 3\sin 3x}}{3}} \right)\\
= \cos 3x - \sin x - \sqrt 3 \left( {\cos x - \sin 3x} \right)\\
= \cos 3x + \sqrt 3 \sin 3x - \sin x - \sqrt 3 \cos x\\
f'\left( x \right) = 0\\
\Leftrightarrow \cos 3x + \sqrt 3 \sin 3x - \sin x - \sqrt 3 \cos x = 0\\
\Leftrightarrow \cos 3x + \sqrt 3 \sin 3x = \sin x + \sqrt 3 \cos x\\
\Leftrightarrow \frac{1}{2}\cos 3x + \frac{{\sqrt 3 }}{2}\sin 3x = \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x\\
\Leftrightarrow \cos \left( {3x - \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{6}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
3x - \frac{\pi }{3} = x - \frac{\pi }{6} + k2\pi \\
3x - \frac{\pi }{3} = - x + \frac{\pi }{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{\pi }{6} + k2\pi \\
4x = \frac{\pi }{2} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{12}} + k\pi \\
x = \frac{\pi }{8} + \frac{{k\pi }}{2}
\end{array} \right.
\end{array}\)

 Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close