Bài 5.49 trang 208 SBT đại số và giải tích 11

Giải bài 5.49 trang 208 sách bài tập đại số và giải tích 11. Giải các phương trình...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình

LG a

\(f'\left( x \right) = 0\) với \(f\left( x \right) = 1 - \sin \left( {\pi  + x} \right) + 2\cos {{3\pi  + x} \over 2}\)

Phương pháp giải:

Sử dụng công thức:

\(\begin{array}{l}
\sin \left( {\pi + \alpha } \right) = - \sin \alpha \\
\cos \left( { - \alpha } \right) = \cos \alpha \\
\cos \left( {\frac{\pi }{2} - \alpha } \right) = \sin \alpha
\end{array}\)

Lời giải chi tiết:

\(\begin{array}{l}
f\left( x \right) = 1 - \sin \left( {\pi + x} \right) + 2\cos \left( {\frac{{3\pi + x}}{2}} \right)\\
= 1 - \left( { - \sin x} \right) + 2\cos \left( {\frac{{3\pi }}{2} + \frac{x}{2}} \right)\\
 = 1 + \sin x + 2\cos \left( {2\pi  - \frac{\pi }{2} + \frac{x}{2}} \right)\\ = 1 + \sin x + 2\cos \left[ { - \left( {\frac{\pi }{2} - \frac{x}{2}} \right)} \right] \\= 1 + \sin x + 2\cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right)\\= 1 + \sin x + 2\sin \frac{x}{2}\\
\Rightarrow f'\left( x \right) = \cos x + \cos \frac{x}{2}\\
f'\left( x \right) = 0 \Leftrightarrow \cos x + \cos \frac{x}{2} = 0\\
\Leftrightarrow 2{\cos ^2}\frac{x}{2} - 1 + \cos \frac{x}{2} = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos \frac{x}{2} = - 1\\
\cos \frac{x}{2} = \frac{1}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{x}{2} = \pi + k2\pi \\
\frac{x}{2} = \frac{\pi }{3} + k2\pi \\
\frac{x}{2} = - \frac{\pi }{3} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2\pi + k4\pi \\
x = \frac{{2\pi }}{3} + k4\pi \\
x = - \frac{{2\pi }}{3} + k4\pi
\end{array} \right.
\end{array}\)

LG b

\(g'\left( x \right) = 0\) với \(g\left( x \right) = \sin 3x - \sqrt 3 \cos 3x + 3\left( {\cos x - \sqrt 3 \sin x} \right).\)

Lời giải chi tiết:

\(\begin{array}{l}
g'\left( x \right) = 3\cos 3x + 3\sqrt 3 \sin 3x + 3\left( { - \sin x - \sqrt 3 \cos x} \right)\\
= 3\left( {\cos 3x + \sqrt 3 \sin 3x} \right) - 3\left( {\sin x + \sqrt 3 \cos x} \right)\\
g'\left( x \right) = 0\\
\Leftrightarrow 3\left( {\cos 3x + \sqrt 3 \sin 3x} \right) - 3\left( {\sin x + \sqrt 3 \cos x} \right) = 0\\
\Leftrightarrow \cos 3x + \sqrt 3 \sin 3x = \sin x + \sqrt 3 \cos x\\
\Leftrightarrow \frac{1}{2}\cos 3x + \frac{{\sqrt 3 }}{2}\sin 3x = \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x\\
\Leftrightarrow \cos \left( {3x - \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{6}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
3x - \frac{\pi }{3} = x - \frac{\pi }{6} + k2\pi \\
3x - \frac{\pi }{3} = - x + \frac{\pi }{6} + k2\pi 
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{\pi }{6} + k2\pi \\
4x = \frac{\pi }{2} + k2\pi 
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{12}} + k\pi \\
x = \frac{\pi }{8} + \frac{{k\pi }}{2}
\end{array} \right.
\end{array}\)

 Loigiaihay.com

Group 2K9 Ôn Thi ĐGNL & ĐGTD Miễn Phí

close