Giải bài 5 trang 92 SGK Toán 7 tập 2 - Cánh diều

Cho tam giác ABC có

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Quảng cáo

Đề bài

Cho tam giác ABC có \(\widehat B > \widehat C\). Tia phân giác góc BAC cắt cạnh BC tại điểm D.

a) Chứng minh \(\widehat {ADB} < \widehat {ADC}\).

b) Kẻ tia Dx nằm trong góc ADC sao cho \(\widehat {ADx} = \widehat {ADB}\). Giả sử tia Dx cắt cạnh AC tại điểm E. Chứng minh: \(\Delta ABD = \Delta AED,AB < AC\). 

Phương pháp giải - Xem chi tiết

a) Tổng ba góc trong một tam giác bằng 180°.

b) Chứng minh \(\Delta ABD = \Delta AED\) theo trường hợp g.c.g và AB < AC vì cạnh đối diện với góc lớn hơn thì lớn hơn.

Lời giải chi tiết

a) Ta có: \(\widehat {BAD} = \widehat {CAD}\)(vì AD là phân giác của góc BAC).

Mà \(\widehat B > \widehat C\)nên \(\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\).

Tổng ba góc trong một tam giác bằng 180° nên:

\(\begin{array}{l}\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\\ \to 180^\circ  - (\widehat B + \widehat {BAD}) < 180^\circ  - (\widehat C + \widehat {CAD})\\ \to \widehat {ADB} < \widehat {ADC}\end{array}\)

b) Xét hai tam giác ADB và tam giác ADE có:

     \(\widehat {ADB} = \widehat {ADE}\);

     AD chung;

     \(\widehat {BAD} = \widehat {EAD}\).

Vậy \(\Delta ABD = \Delta AED\) (g.c.g)

Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.

Trong tam giác ABC có \(\widehat B > \widehat C\) nên AC > AB hay AB < AC (AB là cạnh đối diện với góc C, AC là cạnh đối diện với góc B).

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close