Bài 46 trang 163 SBT toán 9 tập 1

Giải bài 46 trang 163 sách bài tập toán 9. Cho góc nhọn xOy, điểm A thuộc tia Ox. Dựng đường tròn tâm I tiếp xúc với Ox tại A và có tâm I nằm trên tia Oy.

Quảng cáo

Đề bài

Cho góc nhọn \(xOy,\) điểm \(A\) thuộc tia \(Ox.\) Dựng đường tròn tâm \(I\) tiếp xúc với \(Ox\) tại \(A\) và có tâm \(I\) nằm trên tia \(Oy.\)

Phương pháp giải - Xem chi tiết

* Phân tích: 

+) Giả sử đã có một hình thỏa mãn điều kiện bài toán

+) Chọn ra các yếu tố dựng được ngay (đoạn thẳng, tam giác,...)

+) Đưa việc dựng các điểm còn lại về các phép dựng hình cơ bản và các bài toán dựng hình cơ bản (Mỗi điểm thường được xác định là giao của hai đường.)

* Cách dựng: Nêu thứ tự từng bước dựng hình, đồng thời thể hiện các nét dựng trên hình vẽ.

* Chứng minh: Bằng lập luận để chứng tỏ rằng với cách dựng trên, hình đã dựng thỏa mãn các điều kiện của đề bài nêu ra.

* Biện luận: Xem xét khi nào bài toán dựng được và dựng được bao nhiêu hình thỏa mãn đề bài

Lời giải chi tiết

*  Phân tích

Giả sử đường tròn tâm \(I\) dựng được thỏa mãn điều kiện bài toán.

− Đường tròn tâm \(I\) tiếp xúc với \(Ox\) tại \(A\) nên \(I\) nằm trên đường thẳng vuông góc với \(Ox\) kẻ từ \(A.\)

−  Tâm \(I\) nằm trên tia \(Oy\)  nên \(I\) là giao điểm của \(Oy\) và đường thẳng vuông góc với \(Ox\) tại \(A.\)

*  Cách dựng

− Dựng đường vuông góc với \(Ox\) tại \(A\) cắt \(Oy\) tại \(I.\)

− Vẽ đường tròn \((I; IA)\) là đường tròn cần dựng. 

Chứng minh

Ta có: \(I\) thuộc \(Oy,\)\( OA ⊥ IA\) tại \(A.\)

Suy ra \(Ox\) là tiếp tuyến của đường tròn \(( I;IA)\) hay \((I; IA)\) tiếp xúc với \(Ox.\)

* Biện luận

Vì \(\widehat {xOy}\) là góc nhọn nên đường thẳng vuông góc với \(Ox\) tại \(A\) luôn cắt tia \(Oy\) nên tâm \(I\) luôn xác định và duy nhất. 

Loigiaihay.com

  • Bài 47 trang 163 SBT toán 9 tập 1

    Giải bài 47 trang 163 sách bài tập toán 9. Cho đường tròn (O) và đường thẳng d không giao nhau. Dựng tiếp tuyến của đường tròn (O) sao cho tiếp tuyến đó song song với d.

  • Bài 5.1 phần bài tập bổ sung trang 164 SBT toán 9 tập 1

    Giải bài 5.1 phần bài tập bổ sung trang 164 sách bài tập toán 9. Xét tính đúng – sai của mỗi khẳng định sau:...

  • Bài 5.2 phần bài tập bổ sung trang 164 SBT toán 9 tập 1

    Giải bài 5.2 phần bài tập bổ sung trang 164 sách bài tập toán 9. Cho đường tròn (O) đường kính AB, dây CD vuông góc với OA tại trung điểm của OA. Gọi M là điểm đối xứng với O qua A. Chứng minh rằng MC là tiếp tuyến của đường tròn.

  • Bài 45* trang 163 SBT toán 9 tập 1

    Giải bài 45* trang 163 sách bài tập toán 9. Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H. Vẽ đường tròn (O) có đường kính AH. Chứng minh rằng:...

  • Bài 44 trang 163 SBT toán 9 tập 1

    Giải bài 44 trang 163 sách bài tập toán 9. Cho tam giác ABC vuông tại A. Vẽ đường tròn (B ; BA) và đường tròn (C ; CA), chúng cắt nhau tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close