Bài 45 trang 12 SBT toán 9 tập 1

Giải bài 45 trang 12 sách bài tập toán 9. Chứng minh...(a + b)/2...

Quảng cáo

Đề bài

Với \( a ≥ 0, b ≥ 0\), chứng minh 

\( \displaystyle\sqrt {{{a + b} \over 2}}  \ge {{\sqrt a  + \sqrt b } \over 2}.\) 

Phương pháp giải - Xem chi tiết

Áp dụng hằng đẳng thức:

\({(a - b)^2} = {a^2} - 2ab + {b^2}\)

Với \({\rm{A}} \ge {\rm{0}}\) thì \(A = \sqrt {{A^2}} \)

Lời giải chi tiết

Vì \(a ≥ 0\) nên \(\sqrt a \) xác định, \(b ≥ 0\) nên \(\sqrt b \) xác định.

Ta có:

\({\left( {\sqrt a - \sqrt b } \right)^2} \ge 0 \)
\( \Leftrightarrow a - 2\sqrt {ab} + b \ge 0\)

\(\Leftrightarrow a + b \ge 2\sqrt {ab} \)

\( \Leftrightarrow a + b + a + b \ge a + b + 2\sqrt {ab} \)

\( \Leftrightarrow 2(a + b) \ge {\left( {\sqrt a } \right)^2} + 2\sqrt {ab}  + {\left( {\sqrt b } \right)^2}\)

\( \Leftrightarrow 2(a + b) \ge {\left( {\sqrt a + \sqrt b } \right)^2} \) 
\(\displaystyle \Leftrightarrow {{a + b} \over 2} \ge {{{{\left( {\sqrt a + \sqrt b } \right)}^2}} \over 4} \)

\(\displaystyle  \Leftrightarrow \sqrt {{{a + b} \over 2}} \ge \sqrt {{{{{\left( {\sqrt a + \sqrt b } \right)}^2}} \over 4}} \) 
\(\displaystyle \Leftrightarrow \sqrt {{{a + b} \over 2}} \ge {{\sqrt a + \sqrt b } \over 2} \) 

Loigiaihay.com

Quảng cáo

?>
Gửi bài tập - Có ngay lời giải