Bài 4.34 trang 171 SBT đại số và giải tích 11Giải bài 4.34 trang 171 sách bài tập đại số và giải tích 11. Chứng minh rằng nếu một hàm số liên tục trên (a; b] và trên [b; c) thì nó liên tục trên (a; c) Quảng cáo
Đề bài Chứng minh rằng nếu một hàm số liên tục trên (a; b] và trên [b; c) thì nó liên tục trên (a; c). Phương pháp giải - Xem chi tiết Chứng minh hàm số liên tục tại điểm \(b\) suy ra điều phải chứng minh Lời giải chi tiết Vì hàm số liên tục trên (a; b] nên liên tục trên (a; b) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\) (1) Vì hàm số liên tục trên [b; c) nên liên tục trên (b; c) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\) (2) Từ (1) và (2) suy ra \(f\left( x \right)\) liên tục trên các khoảng (a; b), (b; c) và liên tục tại x = b (vì \(\mathop {\lim }\limits_{x \to b} f\left( x \right) = f\left( b \right)\) ). Nghĩa là nó liên tục trên (a; c). Loigiaihay.com
Quảng cáo
|