Bài 4.31 trang 109 SBT đại số 10

Giải bài 4.31 trang 109 sách bài tập đại số 10. Trong các bất phương trình sau đây, bất phương trình nào có nghiệm...

Quảng cáo

Đề bài

Trong các bất phương trình sau đây, bất phương trình nào có nghiệm

A. \(\sqrt {x - 2}  + \sqrt {x - 4}  < x\)

B. \(\sqrt {4 - x} (\sqrt x  + 2)\sqrt {x - 9}  < x + 1\)

C. \(\sqrt {{x^2} + 1}  + \sqrt {{x^4} - {x^2} + 1}  \ge 2\sqrt {{x^6} + 1} \)

D. \(\sqrt {{x^2} + 1}  + \sqrt {{x^4} - {x^2} + 1}  < 2\sqrt {{x^6} + 1} \)

Phương pháp giải - Xem chi tiết

Nhìn qua các đáp án và đưa ra nhận xét

Lời giải chi tiết

Trắc nghiệm:

Ta thấy bất phương trình ở câu c đúng với \(x = 0\).

Vậy chọn đáp án C

Tự luận:

Áp dụng bất đẳng thức Cô – si cho hai số dương \(\sqrt {{x^2} + 1} \) và \(\sqrt {{x^4} - {x^2} + 1} \) ta có:

\(\begin{array}{l}\sqrt {{x^2} + 1}  + \sqrt {{x^4} - {x^2} + 1} \\ \ge 2\sqrt {\sqrt {{x^2} + 1} .\sqrt {{x^4} - {x^2} + 1} } \\ = 2\sqrt {\sqrt {\left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right)} } \\ = 2\sqrt {\sqrt {{x^6} + 1} } \\ = 2\sqrt[4]{{{x^6} + 1}}\\ \Rightarrow \sqrt {{x^2} + 1}  + \sqrt {{x^4} - {x^2} + 1}  \ge 2\sqrt[4]{{{x^6} + 1}}\end{array}\)

Vậy bất phương trình đã cho nghiệm đúng với mọi \(x\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close