Giải bài 4 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạoCho đường thẳng (d:x - y + 1 = 0) và điểm (F(1;1)). Viết phương trình của đường conic nhận F là tiêu điểm, d là đường chuẩn và có tâm sai e trong mỗi trường hợp sau: Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Cho đường thẳng \(d:x - y + 1 = 0\) và điểm \(F(1;1)\). Viết phương trình của đường conic nhận F là tiêu điểm, d là đường chuẩn và có tâm sai e trong mỗi trường hợp sau: a) \(e = \frac{1}{2}\) b) \(e = 1\) c) \(e = 2\) Phương pháp giải - Xem chi tiết Bước 1: Xác định loại đường conic dựa vào tâm sai e: + \(0 < e < 1\) thì conic là đường elip + \(e = 1\) thì conic là đường parabol + \(e > 1\) thì conic là đường hypebol Bước 2: Tìm tập hợp các điểm M sao cho \(\frac{{MF}}{{d(M,\Delta )}} = e\) Từ đó kết luận phương trình đường conic. Lời giải chi tiết a) Đường conic có tâm sai \(e = \frac{1}{2} < 1\) nên là đường elip. Điểm \(M(x,y)\) thuộc đường conic khi và chỉ khi \(\begin{array}{l}\frac{{MF}}{{d(M,\Delta )}} = \frac{1}{2} \Leftrightarrow \frac{{\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} }}{{\frac{{\left| {x + y - 1} \right|}}{{\sqrt 2 }}}} = \frac{1}{2}\\ \Leftrightarrow 2\sqrt 2 \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} = \left| {x + y - 1} \right|\\ \Leftrightarrow 8{\left( {x - 1} \right)^2} + 8{\left( {y - 1} \right)^2} = {\left( {x + y - 1} \right)^2}\\ \Leftrightarrow 7{x^2} + 7{y^2} - 14x - 14y - 2xy + 15 = 0\end{array}\) Vậy phương trình đường elip là \(7{x^2} + 7{y^2} - 14x - 14y - 2xy + 15 = 0\) b) Đường conic có tâm sai \(e = 1\) nên là đường parabol Điểm \(M(x,y)\) thuộc đường conic khi và chỉ khi \(\begin{array}{l}\frac{{MF}}{{d(M,\Delta )}} = 1 \Leftrightarrow \frac{{\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} }}{{\frac{{\left| {x + y - 1} \right|}}{{\sqrt 2 }}}} = 1\\ \Leftrightarrow \sqrt 2 \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} = \left| {x + y - 1} \right|\\ \Leftrightarrow 2{\left( {x - 1} \right)^2} + 2{\left( {y - 1} \right)^2} = {\left( {x + y - 1} \right)^2}\\ \Leftrightarrow {x^2} + {y^2} - 2x - 2y - 2xy + 3 = 0\end{array}\) Vậy phương trình đường parabol là \({x^2} + {y^2} - 2x - 2y - 2xy + 3 = 0\) c) Đường conic có tâm sai \(e = 2 > 1\) nên là đường hypebol. Điểm \(M(x,y)\) thuộc đường conic khi và chỉ khi \(\begin{array}{l}\frac{{MF}}{{d(M,\Delta )}} = 2 \Leftrightarrow \frac{{\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} }}{{\frac{{\left| {x + y - 1} \right|}}{{\sqrt 2 }}}} = 2\\ \Leftrightarrow \sqrt 2 \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} = 2\left| {x + y - 1} \right|\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 2{\left( {x + y - 1} \right)^2}\\ \Leftrightarrow {x^2} + {y^2} - 2x - 2y + 4xy = 0\end{array}\) Vậy phương trình đường hypebol là \(7{x^2} + 7{y^2} - 14x - 14y - 2xy + 15 = 0\)
Quảng cáo
|