Giải bài 4 trang 33 sách bài tập toán 12 - Chân trời sáng tạoCho hàm số (y = frac{{{x^2} - 2{rm{x}} + 1}}{{{rm{x}} - 2}}). Khi đó A. Hàm số đồng biến trên các khoảng (left( { - infty ;1} right)) và (left( {3; + infty } right)). B. Hàm số đồng biến trên các khoảng (left( { - 1;2} right)) và (left( {2;3} right)). C. Hàm số đồng biến trên (left( { - infty ;2} right)). D. Hàm số đồng biến trên (left( {1; + infty } right)). Quảng cáo
Đề bài Cho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 1}}{{{\rm{x}} - 2}}\). Khi đó A. Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\). B. Hàm số đồng biến trên các khoảng \(\left( { - 1;2} \right)\) và \(\left( {2;3} \right)\). C. Hàm số đồng biến trên \(\left( { - \infty ;2} \right)\). D. Hàm số đồng biến trên \(\left( {1; + \infty } \right)\). Phương pháp giải - Xem chi tiết Các bước để xét tính đơn điệu của hàm số \(f\left( x \right)\): Bước 1. Tìm tập xác định \(D\) của hàm số. Bước 2. Tính đạo hàm \(f'\left( x \right)\) của hàm số. Tìm các điểm \({x_1},{x_2},...,{x_n} \in D\) mà tại đó đạo hàm \(f'\left( x \right)\) bằng 0 hoặc không tồn tại. Bước 3. Sắp xếp các điểm \({x_1},{x_2},...,{x_n}\) theo thứ tự tăng dần, xét dấu \(f'\left( x \right)\) và lập bảng biến thiên. Bước 4. Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số. Lời giải chi tiết Xét hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 1}}{{{\rm{x}} - 2}}\). Tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\). Ta có \(\begin{array}{l}y' = \frac{{{{\left( {{x^2} - 2{\rm{x}} + 1} \right)}^\prime }\left( {{\rm{x}} - 2} \right) - \left( {{x^2} - 2{\rm{x}} + 1} \right){{\left( {{\rm{x}} - 2} \right)}^\prime }}}{{{{\left( {{\rm{x}} - 2} \right)}^2}}}\\ = \frac{{\left( {2{\rm{x}} - 2} \right)\left( {{\rm{x}} - 2} \right) - \left( {{x^2} - 2{\rm{x}} + 1} \right)}}{{{{\left( {{\rm{x}} - 2} \right)}^2}}} = \frac{{{x^2} - 4{\rm{x}} + 3}}{{{{\left( {{\rm{x}} - 2} \right)}^2}}}\end{array}\) \(y' = 0 \Leftrightarrow x = 1\) hoặc \({\rm{x}} = 3\). Bảng biến thiên: Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\), nghịch biến trên các khoảng \(\left( {1;2} \right)\) và \(\left( {2;3} \right)\). Chọn A.
Quảng cáo
|