tuyensinh247

Bài 3.43 trang 76 SBT đại số 10

Giải bài 3.43 trang 76 sách bài tập đại số 10. Cho phương trình...

Quảng cáo

Đề bài

Cho phương trình

\((m + 1){x^2} + (3m - 1)x + 2m - 2 = 0\)

Xác định m để phương trình có hai nghiệm \(x{}_1,{x_2}\) mà \(x{}_1 + {x_2} = 3\). Tính các nghiệm trong trường hợp đó.

Phương pháp giải - Xem chi tiết

Phương trình có hai nghiệm và tổng hai nghiệm bằng 3 thì  \(\left\{ {\begin{array}{*{20}{c}}{\Delta  \ge 0}\\{{x_1} + {x_2} =  - \dfrac{b}{a} = 3}\end{array}} \right.\)

Lời giải chi tiết

Bài toán thỏa khi

\(\begin{array}{l}
\left\{ \begin{array}{l}
a \ne 0\\
\Delta \ge 0\\
- \frac{b}{a} = 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m + 1 \ne 0\\
{\left( {3m - 1} \right)^2} - 4\left( {m + 1} \right)\left( {2m - 2} \right) \ge 0\\
- \frac{{3m - 1}}{{m + 1}} = 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne - 1\\
9{m^2} - 6m + 1 - 4\left( {2{m^2} - 2} \right) \ge 0\\
- 3m + 1 = 3m + 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne - 1\\
{m^2} - 6m + 9 \ge 0\\
- 6m = 2
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne - 1\\
{\left( {m - 3} \right)^2} \ge 0\\
m = - \frac{1}{3}
\end{array} \right.\\
\Leftrightarrow m = - \frac{1}{3}
\end{array}\)

Với \(m = - \frac{1}{3}\) thì phương trình trở thành

\(\frac{2}{3}{x^2} - 2x - \frac{8}{3} = 0 \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 4
\end{array} \right.\)

Vậy với \(m = - \frac{1}{3}\) thì phương trình đã cho có hai nghiệm \({x_1} =  - 1,{x_2} = 4\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close