Giải bài 34 trang 16 sách bài tập toán 10 - Cánh diều

Xác định hệ số của \({x^3}\) trong khai triển biểu thức \({\left( {\frac{2}{3}x + \frac{1}{4}} \right)^5}\)

Quảng cáo

Đề bài

Xác định hệ số của \({x^3}\) trong khai triển biểu thức \({\left( {\frac{2}{3}x + \frac{1}{4}} \right)^5}\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức khai triển \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)

Lời giải chi tiết

Ta có: 

 

                 

Số hạng chứa \({x^3}\) trong khai triển biểu thức \({\left( {\frac{2}{3}x + \frac{1}{4}} \right)^5}\) là \(\frac{5}{{27}}{x^3}\)

Vậy hệ số của \({x^3}\) trong khai triển biểu thức \({\left( {\frac{2}{3}x + \frac{1}{4}} \right)^5}\) là \(\frac{5}{{27}}\)

 

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close