Giải bài 3 trang 85 sách bài tập toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Bạn Lan có 2 con xúc xắc cân đối, 1 con có màu xanh và 1 con có màu đỏ. Lan gieo đồng thời 2 con xúc xắc. a) Xác suất của biến cố con xúc xắc màu xanh xuất hiện mặt 1 chấm, biết rằng tổng số chấm trên hai con xúc xắc bằng 5 là: A. (frac{1}{3}). B. (frac{1}{5}). C. (frac{1}{4}). D. (frac{1}{6}). b) Xác suất của biến cố con xúc xắc màu đỏ xuất hiện mặt 6 chấm, biết rằng có ít nhất một con xúc xắc xuất hiện mặt 6 chấm là A. (frac{{13}}{{36}}). B. (frac{1

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Chọn đáp án đúng.

Bạn Lan có 2 con xúc xắc cân đối, 1 con có màu xanh và 1 con có màu đỏ. Lan gieo đồng thời 2 con xúc xắc.

a) Xác suất của biến cố con xúc xắc màu xanh xuất hiện mặt 1 chấm, biết rằng tổng số chấm trên hai con xúc xắc bằng 5 là:

A. \(\frac{1}{3}\).

B. \(\frac{1}{5}\).

C. \(\frac{1}{4}\).

D. \(\frac{1}{6}\).

b) Xác suất của biến cố con xúc xắc màu đỏ xuất hiện mặt 6 chấm, biết rằng có ít nhất một con xúc xắc xuất hiện mặt 6 chấm là

A. \(\frac{{13}}{{36}}\).

B. \(\frac{1}{6}\).

C. \(\frac{1}{2}\).

D. \(\frac{6}{{11}}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).

Lời giải chi tiết

a) Gọi \(A\) là biến cố “Con xúc xắc màu xanh xuất hiện 1 chấm” và \(B\) là biến cố “Tổng số chấm trên hai con xúc xắc bằng 5”.

Khi đó ta có: \(P\left( A \right) = \frac{1}{6},P\left( B \right) = \frac{4}{{36}} = \frac{1}{9}\).

Khi đó \(AB\) là biến cố “Con xúc xắc màu xanh xuất hiện 1 chấm và con xúc xắc màu đỏ xuất hiện mặt 4 chấm”. Vậy \(P\left( {AB} \right) = \frac{1}{{36}}\).

Theo công thức tính xác suất có điều kiện, ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{{36}}:\frac{1}{9} = \frac{1}{4}\).

Chọn C

b) Gọi \(C\) là biến cố “Con xúc xắc màu đỏ xuất hiện mặt 6 chấm” và \(D\) là biến cố “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.

Khi đó ta có: \(P\left( C \right) = \frac{1}{6},P\left( D \right) = \frac{{11}}{{36}}\).

Khi đó \(C{\rm{D}}\) là biến cố “Con xúc xắc màu xanh xuất hiện 1 chấm và con xúc xắc còn lại xuất hiện mặt bất kì”. Vậy \(P\left( {C{\rm{D}}} \right) = \frac{6}{{36}} = \frac{1}{6}\).

Theo công thức tính xác suất có điều kiện, ta có: \(P\left( {C|D} \right) = \frac{{P\left( {C{\rm{D}}} \right)}}{{P\left( D \right)}} = \frac{1}{6}:\frac{{11}}{{36}} = \frac{6}{{11}}\).

Chọn D

  • Giải bài 4 trang 86 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho sơ đồ hình cây dưới đây: a) Xác suất của biến cố (B) với điều kiện (A) không xảy ra là 0,6. b) Xác suất cả hai biến cố (A) và (B) đều xảy ra là 0,3. c) Xác suất của biến cố (B) là 0,9. d) Xác suất của biến cố (A) với điều kiện (B) là (frac{1}{{19}}).

  • Giải bài 5 trang 86 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Ông Khải lần lượt rút ra một cách ngẫu nhiên 2 lá bài từ bộ bài tây 52 lá. Lá bài rút ra không được trả lại. Gọi (A) là biến cố “Lá bài đầu tiên rút ra là chất cơ” và (B) là biến cố “Lá bài thứ hai rút ra là lá Q”. a) Xác suất của biến cố (A) là 0,25. b) Xác suất của biến cố (A) giao (B) là 0,25. c) Xác suất của biến cố (A) với điều kiện (B) là 0,25. d) (A) và (B) là hai biến cố độc lập.

  • Giải bài 1 trang 86 sách bài tập toán 12 - Chân trời sáng tạo

    Ông Hải rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Gọi (A) là biến cố “Lá bài được chọn là lá K” và (B) là biến cố “Lá bài được chọn là chất cơ”. Tính (Pleft( A right),Pleft( {A|B} right)) và (Pleft( {A|overline B } right)).

  • Giải bài 2 trang 86 sách bài tập toán 12 - Chân trời sáng tạo

    Một xạ thủ lần lượt bắn 2 viên đạn vào một bia. Xác suất trúng bia của viên thứ nhất là 0,7; của viên thứ hai là 0,8 và của cả 2 viên là 0,6. Gọi \(A\) là biến cố “Viên đạn thứ nhất trúng bia”, \(B\) là biến cố “Viên đạn thứ hai trúng bia”. a) Tính \(P\left( {A|B} \right)\) và \(P\left( {B|A} \right)\). b) Hai biến cố \(A\) và \(B\) có độc lập không, tại sao?

  • Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo

    Một vận động viên bóng bàn thắng 60% các séc đấu anh ta được ra bóng trước và 45% các séc đấu anh ta không được ra bóng trước. Trong một séc đấu, trọng tài gieo một đồng xu cân đối để xác định ai là người ra bóng trước. Tính xác suất vận động viên đó thắng séc đấu.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close