Giải bài 1 trang 86 sách bài tập toán 12 - Chân trời sáng tạoÔng Hải rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Gọi (A) là biến cố “Lá bài được chọn là lá K” và (B) là biến cố “Lá bài được chọn là chất cơ”. Tính (Pleft( A right),Pleft( {A|B} right)) và (Pleft( {A|overline B } right)). Quảng cáo
Đề bài Ông Hải rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Gọi \(A\) là biến cố “Lá bài được chọn là lá K” và \(B\) là biến cố “Lá bài được chọn là chất cơ”. Tính \(P\left( A \right),P\left( {A|B} \right)\) và \(P\left( {A|\overline B } \right)\). Phương pháp giải - Xem chi tiết Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\). Lời giải chi tiết \(A\) là biến cố “Lá bài được chọn là lá K” và \(B\) là biến cố “Lá bài được chọn là chất cơ”. Xác suất lá bài được chọn là lá K là \(P\left( A \right) = \frac{4}{{52}} = \frac{1}{{13}}\). Xác suất lá bài được chọn là chất cơ là \(P\left( B \right) = \frac{{13}}{{52}} = \frac{1}{4}\). Xác suất lá bài được chọn là quân K cơ là \(P\left( {AB} \right) = \frac{1}{{52}}\). Theo công thức tính xác suất có điều kiện, xác suất lá bài được chọn là lá K, biết rằng lá đó có chất cơ là: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{{52}}:\frac{1}{4} = \frac{1}{{13}}\). Xác suất lá bài được chọn là lá K, nhưng không phải chất cơ là \(P\left( {A\overline B } \right) = \frac{3}{{52}}\). Xác suất lá bài được chọn không phải chất cơ là \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - \frac{1}{4} = \frac{3}{4}\). Theo công thức tính xác suất có điều kiện, xác suất lá bài được chọn là lá K, biết rằng lá đó không phải chất cơ là: \(P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{3}{{52}}:\frac{3}{4} = \frac{1}{{13}}\).
Quảng cáo
|