Giải bài 2 trang 86 sách bài tập toán 12 - Chân trời sáng tạoMột xạ thủ lần lượt bắn 2 viên đạn vào một bia. Xác suất trúng bia của viên thứ nhất là 0,7; của viên thứ hai là 0,8 và của cả 2 viên là 0,6. Gọi \(A\) là biến cố “Viên đạn thứ nhất trúng bia”, \(B\) là biến cố “Viên đạn thứ hai trúng bia”. a) Tính \(P\left( {A|B} \right)\) và \(P\left( {B|A} \right)\). b) Hai biến cố \(A\) và \(B\) có độc lập không, tại sao? Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Một xạ thủ lần lượt bắn 2 viên đạn vào một bia. Xác suất trúng bia của viên thứ nhất là 0,7; của viên thứ hai là 0,8 và của cả 2 viên là 0,6. Gọi \(A\) là biến cố “Viên đạn thứ nhất trúng bia”, \(B\) là biến cố “Viên đạn thứ hai trúng bia”. a) Tính \(P\left( {A|B} \right)\) và \(P\left( {B|A} \right)\). b) Hai biến cố \(A\) và \(B\) có độc lập không, tại sao? Phương pháp giải - Xem chi tiết ‒ Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\). ‒ \(A\) và \(B\) là hai biến cố độc lập khi và chỉ khi \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\). Lời giải chi tiết a) \(A\) là biến cố “Viên đạn thứ nhất trúng bia”, \(B\) là biến cố “Viên đạn thứ hai trúng bia”. Xác suất trúng bia của viên thứ nhất là 0,7 nên ta có \(P\left( A \right) = 0,7\). Xác suất trúng bia của viên thứ hai là 0,8 nên ta có \(P\left( B \right) = 0,8\). Xác suất trúng bia của cả 2 viên là 0,6 nên ta có \(P\left( {AB} \right) = 0,6\). Theo công thức tính xác suất có điều kiện, xác suất trúng bia của viên thứ nhất, biết rằng viên thứ hai trung bia là: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,6}}{{0,8}} = 0,75\). Theo công thức tính xác suất có điều kiện, xác suất trúng bia của viên thứ hai, biết rằng viên thứ nhất trung bia là: \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,6}}{{0,7}} = \frac{6}{7} \approx 0,857\). b) Ta có: \(P\left( A \right).P\left( B \right) = 0,7.0,8 = 0,56 \ne P\left( {AB} \right)\) nên hai biến cố \(A\) và \(B\) không độc lập.
Quảng cáo
|