Bài 24 trang 215 SBT đại số 10

Giải bài 24 trang 215 sách bài tập đại số 10. Rút gọn...

Quảng cáo

Đề bài

Tính giá trị biểu thức \(\cos \dfrac{\pi }{7}\cos \dfrac{{4\pi }}{7}\cos \dfrac{{5\pi }}{7}\)

    A. 1/8          B. -1/8

    C. 1/5          D. 2/5

Phương pháp giải - Xem chi tiết

Nhân biểu thức đã cho với sinπ/7.

Lời giải chi tiết

\(\begin{array}{l}
A = \cos \frac{\pi }{7}\cos \frac{{4\pi }}{7}\cos \frac{{5\pi }}{7}\\
\Rightarrow \sin \frac{\pi }{7}A\\
= \sin \frac{\pi }{7}\cos \frac{\pi }{7}\cos \frac{{4\pi }}{7}\cos \frac{{5\pi }}{7}\\
= \frac{1}{2}.2\sin \frac{\pi }{7}\cos \frac{\pi }{7}\cos \frac{{4\pi }}{7}\cos \frac{{5\pi }}{7}\\
= \frac{1}{2}\sin \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7}\cos \frac{{5\pi }}{7}\\
= \frac{1}{2}\sin \frac{{2\pi }}{7}.\frac{1}{2}\left( {\cos \frac{{9\pi }}{7} + \cos \frac{\pi }{7}} \right)\\
= \frac{1}{2}\sin \frac{{2\pi }}{7}.\frac{1}{2}\left( { - \cos \frac{{2\pi }}{7} + \cos \frac{\pi }{7}} \right)\\
= \frac{1}{4}\left( { - \sin \frac{{2\pi }}{7}\cos \frac{{2\pi }}{7} + \sin \frac{{2\pi }}{7}\cos \frac{\pi }{7}} \right)\\
= \frac{1}{4}\left( { - \frac{1}{2}.2\sin \frac{{2\pi }}{7}\cos \frac{{2\pi }}{7} + \sin \frac{{2\pi }}{7}\cos \frac{\pi }{7}} \right)\\
= \frac{1}{4}\left[ { - \frac{1}{2}\sin \frac{{4\pi }}{7} + \frac{1}{2}\left( {\sin \frac{{3\pi }}{7} + \sin \frac{\pi }{7}} \right)} \right]\\
= \frac{1}{8}\left[ { - \sin \frac{{4\pi }}{7} + \sin \frac{{3\pi }}{7} + \sin \frac{\pi }{7}} \right]\\
= \frac{1}{8}\left( { - \sin \frac{{4\pi }}{7} + \sin \frac{{4\pi }}{7} + \sin \frac{\pi }{7}} \right)\\
= \frac{1}{8}\sin \frac{\pi }{7}\\
\Rightarrow A = \frac{{\frac{1}{8}\sin \frac{\pi }{7}}}{{\sin \frac{\pi }{7}}} = \frac{1}{8}
\end{array}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close