Bài 21 trang 214 SBT đại số 10

Giải bài 21 trang 214 sách bài tập đại số 10. Rút gọn...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn

LG a

\(4{\cos ^4}a - 2\cos 2a - \dfrac{1}{2}\cos 4a\);

Lời giải chi tiết:

\(4{\cos ^4}a - 2\cos 2a - \dfrac{1}{2}\cos 4a\)

=\(4{\cos ^4}a - 2(2{\cos ^2}a - 1)\) \( - \dfrac{1}{2}(2{\cos ^2}2a - 1)\)

=\(4{\cos ^4}a - 4{\cos ^2}a + 2 \) \(- {(2{\cos ^2}a - 1)^2} + \dfrac{1}{2}\)

=\(4{\cos ^4}a - 4{\cos ^2}a + \dfrac{5}{2} \) \(- 4{\cos ^4}a + 4{\cos ^2}a - 1 \) \(= \dfrac{3}{2}\)

LG b

\({\sin ^2}a\left( {1 + \dfrac{1}{{\sin a}} + \cot a} \right)\left( {1 - \dfrac{1}{{\sin a}} + \cot a} \right)\);

Lời giải chi tiết:

\({\sin ^2}a(1 + \dfrac{1}{{\sin a}} + \cot a)(1 - \dfrac{1}{{\sin a}} + \cot a)\)

=\({\sin ^2}a\left[ {{{(1 + cota)}^2} - \dfrac{1}{{{{\sin }^2}a}}} \right] \) \(= {\sin ^2}a(1 + {\cot ^2}a + 2\cot a) - 1\)

=\({\sin ^2}a + {\cos ^2}a + 2{\sin ^2}a\dfrac{{\cos a}}{{\sin a}} - 1\) \( = \sin 2a\)

LG c

\(\dfrac{{\cos 2a}}{{{{\cos }^4}a - {{\sin }^4}a}} - \dfrac{{{{\cos }^4}a + {{\sin }^4}a}}{{1 - \dfrac{1}{2}{{\sin }^2}2a}}\).

Lời giải chi tiết:

\(\dfrac{{\cos 2a}}{{{{\cos }^4}a - {{\sin }^4}a}} - \dfrac{{{{\cos }^4}a + {{\sin }^4}a}}{{1 - \dfrac{1}{2}{{\sin }^2}2a}}\)

=\(\dfrac{{{{\cos }^2}a - {{\sin }^2}a}}{{({{\cos }^2}a + {{\sin }^2}a)({{\cos }^2}a - {{\sin }^2}a)}} \) \(- \dfrac{{{{\cos }^4}a + {{\sin }^4}a}}{{1 - \dfrac{1}{2}{{(2\sin a\cos a)}^2}}}\)

\(\begin{array}{l}
= 1 - \dfrac{{{{\left( {{{\sin }^2}a + {{\cos }^2}a} \right)}^2} - 2{{\sin }^2}a{{\cos }^2}a}}{{1 - 2{{\sin }^2}a{{\cos }^2}a}}\\
= 1 - \dfrac{{1 - 2{{\sin }^2}a{{\cos }^2}a}}{{1 - 2{{\sin }^2}a{{\cos }^2}a}}\\
= 1 - 1 = 0
\end{array}\)

Loigiaihay.com

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close