Bài 1.8 trang 13 SBT đại số và giải tích 11

Giải bài 1.8 trang 13 sách bài tập đại số và giải tích 11. Tập xác định của hàm số...

Quảng cáo

Đề bài

Tập xác định của hàm số \(y = \dfrac{{1 - \sin x}}{{2\cot x}}\) là  

A. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi } \right\}\)

B. \(\mathbb{R}\backslash \left\{ {k\dfrac{\pi }{2}} \right\}\)

C. \(\mathbb{R}\backslash \left\{ {k\pi } \right\}\)

D. \(\mathbb{R}\backslash \left\{ {k2\pi } \right\}\)

Phương pháp giải - Xem chi tiết

Điều kiện xác định của hàm số \(y = \dfrac{{f(x)}}{{g(x)}}\) là \(g(x) \ne 0\)

Lời giải chi tiết

ĐKXĐ: \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right .\)

\(\Leftrightarrow \sin x\cos x \ne 0 \Leftrightarrow 2\sin x\cos x \ne 0\)

\(\Leftrightarrow \sin 2x \ne 0\)

\( \Leftrightarrow x \ne k\dfrac{\pi }{2},k \in \mathbb{Z}\)

Vậy \(D=\mathbb{R}\backslash \left\{ {k\dfrac{\pi }{2}},k \in \mathbb{Z}  \right\}\)

Đáp án :B

Cách khác:

Hàm số không xác định khi cotx = 0 hoặc khi cotx không xác định

Tức là khi x = kπ hoặc x = π/2 + kπ, k ∈ Z.

Gộp hai giá trị này lại ta được kết quả x = kπ/2, k ∈ Z.

Vậy tập xác định là R \ {π/2+kπ,k ∈ Z }.

 Loigiaihay.com

Quảng cáo

Xem thêm tại đây: Bài 1: Hàm số lượng giác
Gửi bài