Bài 1.10 trang 14 SBT đại số và giải tích 11

Giải bài 1.10 trang 14 sách bài tập đại số và giải tích 11. Tập xác định của hàm số y...

Quảng cáo

Đề bài

Tập xác định của hàm số \(y = \dfrac{{\sqrt {1 - 2\cos x} }}{{\sqrt 3  - \tan x}}\) là

A. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi } \right\}\)

B. \(\mathbb{R}\backslash \left( { - \dfrac{\pi }{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right)\)

C. \(\mathbb{R}\backslash \left\{ {\left\{ {\dfrac{\pi }{3} + k2\pi } \right\} \cup \left\{ {\dfrac{\pi }{2} + k2\pi } \right\}} \right\}\)

D. \(\mathbb{R}\backslash \left\{ {\left( { - \dfrac{\pi }{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right] \cup \left\{ {\dfrac{\pi }{2} + k\pi } \right\}} \right\}\)

Phương pháp giải - Xem chi tiết

Hàm số \(y = \dfrac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\).

Hàm số \(y = \sqrt {f(x)} \) xác định khi \(f(x) \ge 0\).

Lời giải chi tiết

Hàm số \(y = \dfrac{{\sqrt {1 - 2\cos x} }}{{\sqrt 3  - \tan x}}\) không xác định khi

\(\left\{ \begin{array}{l}1 - 2\cos x < 0\\\tan x = \sqrt 3 \\\cos x = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - \dfrac{\pi }{3} + k2\pi  < x < \dfrac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \dfrac{\pi }{3} + k\pi ,k \in \mathbb{Z}\\x = \dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}\end{array} \right.\)

Vậy tập xác định là \(\) \(\mathbb{R}\backslash \left\{ {\left( { - \dfrac{\pi }{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right] \cup \left\{ {\dfrac{\pi }{2} + k\pi } \right\}} \right\}\)

Đáp án: D.

Cách trắc nghiệm.

Xét các phương án

Với x = π/3 thì tan x = √3 nên hàm số không xác định, do đó các phương án A và B bị loại.

Với x=0 thì \(1 - 2\cos 0 =  - 1 < 0\) nên hàm số không xác định, mà x=0 lại thuộc tập hợp đáp án C nên loại C.

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !

Quảng cáo

Xem thêm tại đây: Bài 1: Hàm số lượng giác
list
close
Gửi bài Gửi bài