Bài 1.70 trang 41 SBT hình học 11

Giải bài 1.70 trang 41 sách bài tập hình học 11. Trong mặt phẳng Oxy cho đường tròn (C) có phương trình...

Quảng cáo

Đề bài

Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right)\) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 4\). Đường tròn \(\left( C \right)\) qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục \(Oy\) và phép tịnh tiến theo véc tơ \(\overrightarrow v \left( {2;3} \right)\) được biến thành đường tròn có phương trình

A. \({x^2} + {y^2} = 4\)

B. \({\left( {x - 2} \right)^2} + {\left( {y - 6} \right)^2} = 4\)

C. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 4\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 4\)

Phương pháp giải - Xem chi tiết

- Tìm tâm \(I\) và bán kính \(R\) của đường tròn đã cho.

- Tìm ảnh \(I'\) của \(I\) qua phép đối xứng trục \(Oy\).

- Tìm ảnh của \(I'\) qua phép tịnh tiến theo véc tơ \(\overrightarrow v \).

- Viết phương trình đường tròn, chú ý đường tròn mới có bán kính bằng bán kính đường tròn ban đầu.

Lời giải chi tiết

Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(R = 2\).

Gọi \(I' = {D_{Oy}}\left( I \right)\) thì \(\left\{ \begin{array}{l}x' =  - x =  - 1\\y' = y =  - 2\end{array} \right.\) hay \(I'\left( { - 1; - 2} \right)\).

Gọi \(I'' = {T_{\overrightarrow v }}\left( {I'} \right)\) thì \(\left\{ \begin{array}{l}x'' = x' + 2 =  - 1 + 2 = 1\\y'' = y' + 3 =  - 2 + 3 = 1\end{array} \right.\) hay \(I''\left( {1;1} \right)\).

Đường tròn ảnh có cùng bán kính với đường tròn đã cho nên có phương trình: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 4\).

Chọn D.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close