Bài 15 trang 233 SBT đại số và giải tích 11

Giải bài 15 trang 233 sách bài tập đại số và giải tích 11. Tính giới hạn...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tính giới hạn \(\mathop {\lim }\limits_{n \to  + \infty } {x_n}\)

LG a

\({x_n} = \frac{{\sqrt {{n^2} + 1}  + \sqrt n }}{{\sqrt[3]{{{n^3} + n}} - n}}\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \frac{{\sqrt {{n^2} + 1}  + \sqrt n }}{{\sqrt[3]{{{n^3} + n}} - n}}\\ = \lim \frac{{\sqrt {{n^2}\left( {1 + \frac{1}{{{n^2}}}} \right)}  + \frac{n}{{\sqrt n }}}}{{\sqrt[3]{{{n^3}\left( {1 + \frac{1}{{{n^2}}}} \right)}} - n}}\\ = \lim \frac{{n\sqrt {1 + \frac{1}{{{n^2}}}}  + n.\frac{1}{{\sqrt n }}}}{{n\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - n}}\\ = \lim \frac{{n\left( {\sqrt {1 + \frac{1}{{{n^2}}}}  + \frac{1}{{\sqrt n }}} \right)}}{{n\left( {\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - 1} \right)}}\\ = \lim \frac{{\sqrt {1 + \frac{1}{{{n^2}}}}  + \frac{1}{{\sqrt n }}}}{{\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - 1}} =  + \infty \end{array}\)

Vì \(\lim \left( {\sqrt {1 + \frac{1}{{{n^2}}}}  + \frac{1}{{\sqrt n }}} \right) = 1 > 0\) và \(\left\{ \begin{array}{l}\lim \left( {\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - 1} \right) = 0\\\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - 1 > 0\end{array} \right.\)

LG b

\({x_n} = \left( {n - \frac{1}{n}} \right)\left( {\frac{{1 - 4n}}{{2{n^2}}}} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left( {n - \frac{1}{n}} \right)\left( {\frac{{1 - 4n}}{{2{n^2}}}} \right)\\ = \lim \frac{{\left( {{n^2} - 1} \right)\left( {1 - 4n} \right)}}{{2{n^3}}}\\ = \lim \frac{{\frac{{{n^2} - 1}}{{{n^2}}}.\frac{{1 - 4n}}{n}}}{{\frac{{2{n^3}}}{{{n^3}}}}}\\ = \lim \frac{{\left( {1 - \frac{1}{{{n^2}}}} \right).\left( {\frac{1}{n} - 4} \right)}}{2}\\ = \frac{{\left( {1 - 0} \right)\left( {0 - 4} \right)}}{2} =  - 2\end{array}\)

Cách khác:

\(\begin{array}{l}\lim {x_n} = \lim \left( {n - \frac{1}{n}} \right)\left( {\frac{{1 - 4n}}{{2{n^2}}}} \right)\\ = \lim \left[ {n\left( {1 - \frac{1}{{{n^2}}}} \right).\frac{1}{n}\left( {\frac{{1 - 4n}}{{2n}}} \right)} \right]\\ = \lim \left[ {n\left( {1 - \frac{1}{{{n^2}}}} \right).\frac{1}{n}\left( {\frac{1}{{2n}} - 2} \right)} \right]\\ = \lim \left( {1 - \frac{1}{{{n^2}}}} \right)\left( {\frac{1}{{2n}} - 2} \right)\\ = \left( {1 - 0} \right)\left( {0 - 2} \right) =  - 2\end{array}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close