Bài 15 trang 233 SBT đại số và giải tích 11Giải bài 15 trang 233 sách bài tập đại số và giải tích 11. Tính giới hạn... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tính giới hạn \(\mathop {\lim }\limits_{n \to + \infty } {x_n}\) LG a \({x_n} = \frac{{\sqrt {{n^2} + 1} + \sqrt n }}{{\sqrt[3]{{{n^3} + n}} - n}}\) Lời giải chi tiết: \(\begin{array}{l}\lim {x_n} = \lim \frac{{\sqrt {{n^2} + 1} + \sqrt n }}{{\sqrt[3]{{{n^3} + n}} - n}}\\ = \lim \frac{{\sqrt {{n^2}\left( {1 + \frac{1}{{{n^2}}}} \right)} + \frac{n}{{\sqrt n }}}}{{\sqrt[3]{{{n^3}\left( {1 + \frac{1}{{{n^2}}}} \right)}} - n}}\\ = \lim \frac{{n\sqrt {1 + \frac{1}{{{n^2}}}} + n.\frac{1}{{\sqrt n }}}}{{n\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - n}}\\ = \lim \frac{{n\left( {\sqrt {1 + \frac{1}{{{n^2}}}} + \frac{1}{{\sqrt n }}} \right)}}{{n\left( {\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - 1} \right)}}\\ = \lim \frac{{\sqrt {1 + \frac{1}{{{n^2}}}} + \frac{1}{{\sqrt n }}}}{{\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - 1}} = + \infty \end{array}\) Vì \(\lim \left( {\sqrt {1 + \frac{1}{{{n^2}}}} + \frac{1}{{\sqrt n }}} \right) = 1 > 0\) và \(\left\{ \begin{array}{l}\lim \left( {\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - 1} \right) = 0\\\sqrt[3]{{1 + \frac{1}{{{n^2}}}}} - 1 > 0\end{array} \right.\) LG b \({x_n} = \left( {n - \frac{1}{n}} \right)\left( {\frac{{1 - 4n}}{{2{n^2}}}} \right)\) Lời giải chi tiết: \(\begin{array}{l}\lim {x_n} = \lim \left( {n - \frac{1}{n}} \right)\left( {\frac{{1 - 4n}}{{2{n^2}}}} \right)\\ = \lim \frac{{\left( {{n^2} - 1} \right)\left( {1 - 4n} \right)}}{{2{n^3}}}\\ = \lim \frac{{\frac{{{n^2} - 1}}{{{n^2}}}.\frac{{1 - 4n}}{n}}}{{\frac{{2{n^3}}}{{{n^3}}}}}\\ = \lim \frac{{\left( {1 - \frac{1}{{{n^2}}}} \right).\left( {\frac{1}{n} - 4} \right)}}{2}\\ = \frac{{\left( {1 - 0} \right)\left( {0 - 4} \right)}}{2} = - 2\end{array}\) Cách khác: \(\begin{array}{l}\lim {x_n} = \lim \left( {n - \frac{1}{n}} \right)\left( {\frac{{1 - 4n}}{{2{n^2}}}} \right)\\ = \lim \left[ {n\left( {1 - \frac{1}{{{n^2}}}} \right).\frac{1}{n}\left( {\frac{{1 - 4n}}{{2n}}} \right)} \right]\\ = \lim \left[ {n\left( {1 - \frac{1}{{{n^2}}}} \right).\frac{1}{n}\left( {\frac{1}{{2n}} - 2} \right)} \right]\\ = \lim \left( {1 - \frac{1}{{{n^2}}}} \right)\left( {\frac{1}{{2n}} - 2} \right)\\ = \left( {1 - 0} \right)\left( {0 - 2} \right) = - 2\end{array}\) Loigiaihay.com
Quảng cáo
|