Bài 13 trang 117 Vở bài tập toán 7 tập 1Giải bài 13 trang 117 VBT toán 7 tập 1. Xét bài toán: Tam giác AMB và tam giác ANB ... Quảng cáo
Đề bài Xét bài toán: "\(\Delta AMB\) và \(\Delta ANB\) có \(MA=MB, NA=NB\) (h.71). Chứng minh rằng \(\widehat{AMN}=\widehat{BMN}\)." 1) Hãy ghi giả thiết và kết luận của bài toán. 2) Hãy sắp xếp bốn câu sau đây một cách hợp lý để giải bài toán trên : a) Do đó \(\Delta AMN=\Delta BMN (c.c.c)\) b) \(MN\) cạnh chung \(MA=MB\) (giả thiết) \(NA= NB\) (giả thiết) c) Suy ra \(\widehat{AMN}=\widehat{BMN}\) (hai góc tương ứng) d) \(\Delta AMN\) và \(\Delta BMN\) có: Phương pháp giải - Xem chi tiết Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau. Lời giải chi tiết Thứ tự sắp xếp bốn câu trên là d, b, a, c như sau: \(\Delta AMN\) và \(\Delta BMN\) có: \(MN\) cạnh chung \(MA=MB\) (giả thiết) \(NA= NB\) (giả thiết) Do đó \(\Delta AMN=\Delta BMN (c.c.c)\) Suy ra \(\widehat{AMN}=\widehat{BMN}\) (hai góc tương ứng). Loigiaihay.com
Quảng cáo
|