Giải bài 12 trang 80 sách bài tập toán 12 - Chân trời sáng tạo

Cho sáu điểm \(A\left( {1;2;3} \right),B\left( {2; - 1;1} \right),C\left( {3;3; - 3} \right)\) và \(A',B',C'\) thoả mãn \(\overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = \overrightarrow 0 \). Tìm toạ độ trọng tâm \(G\) của tam giác \(A'B'C'\).

Quảng cáo

Đề bài

Cho sáu điểm \(A\left( {1;2;3} \right),B\left( {2; - 1;1} \right),C\left( {3;3; - 3} \right)\) và \(A',B',C'\) thoả mãn \(\overrightarrow {A'A}  + \overrightarrow {B'B}  + \overrightarrow {C'C}  = \overrightarrow 0 \). Tìm toạ độ trọng tâm \(G\) của tam giác \(A'B'C'\).

Phương pháp giải - Xem chi tiết

‒ Sử dụng tính chất trọng tâm: \(G\) là trọng tâm của tam giác \(ABC\) thì \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \).

‒ Sử dụng công thức toạ độ trọng tâm \(G\) của tam giác \(ABC\):

\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).

Lời giải chi tiết

\(G\) là trọng tâm của tam giác \(A'B'C'\) nên ta có \(\overrightarrow {GA'}  + \overrightarrow {GB'}  + \overrightarrow {GC'}  = \overrightarrow 0 \) hay \(\overrightarrow {A'G}  + \overrightarrow {B'G}  + \overrightarrow {C'G}  = \overrightarrow 0 \).

Ta có:

\(\begin{array}{l}\overrightarrow {A'A}  + \overrightarrow {B'B}  + \overrightarrow {C'C}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {A'G}  + \overrightarrow {GA}  + \overrightarrow {B'G}  + \overrightarrow {GB}  + \overrightarrow {C'G}  + \overrightarrow {GC}  = \overrightarrow 0 \\ \Leftrightarrow \left( {\overrightarrow {A'G}  + \overrightarrow {B'G}  + \overrightarrow {C'G} } \right) + \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow 0  + \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \end{array}\)

Do đó, \(G\) là trọng tâm của tam giác \(ABC\).

Vậy \(G\left( {\frac{{1 + 2 + 3}}{3};\frac{{2 + \left( { - 1} \right) + 3}}{3};\frac{{3 + 1 + \left( { - 3} \right)}}{3}} \right)\) hay \(G\left( {2;\frac{4}{3};\frac{1}{3}} \right)\).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close