Bài 115 trang 29 SBT toán 7 tập 1

Giải bài 115 trang 29 sách bài tập toán 7 tập 1. Cho x là số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng x + y và x.y là những số vô tỉ.

Quảng cáo

Đề bài

Cho \(x\) là số hữu tỉ khác \(0,\) \(y\) là một số vô tỉ. Chứng tỏ rằng \(x + y\) và \(x.y\) là những số vô tỉ .

Phương pháp giải - Xem chi tiết

Sử dụng: 

\(\begin{array}{l}
a \in \mathbb Q;\,b \in \mathbb Q \Rightarrow a + b \in\mathbb Q\\
0 \ne a \in\mathbb Q;\,b \in\mathbb Q \Rightarrow b:a \in\mathbb Q
\end{array}\)

Lời giải chi tiết

Giả sử \(x + y = z\) là một số hữu tỉ

\( \Rightarrow  y = z - x\) ta có \(z\) hữu tỉ, \(x\) hữu tỉ thì hiệu \(z - x\) là một số hữu tỉ.

\( \Rightarrow  y ∈\mathbb Q\) trái giả thiết \(y\) là số vô tỉ.

Vậy \(x + y\) là số vô tỉ.

Giả sử \(x.y  = z\) là một số hữu tỉ.

\( \Rightarrow  y = z: x\) mà \(x ∈\mathbb Q; z ∈\mathbb Q\) \( \Rightarrow  z: x ∈\mathbb Q\).

\( \Rightarrow  y ∈\mathbb Q\) trái giả thiết \(y\) là số vô tỉ.

Vậy \(xy\) là số vô tỉ.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close