Giải bài 1 trang 31 sách bài tập toán 12 - Chân trời sáng tạo

Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = xleft( {{x^2} - 4x} right)); b) (y = - {x^3} + 3{x^2} - 2).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Khảo sát và vẽ đồ thị của các hàm số sau:

a) \(y = x\left( {{x^2} - 4x} \right)\);

b) \(y =  - {x^3} + 3{x^2} - 2\).

Phương pháp giải - Xem chi tiết

Sơ đồ khảo sát hàm số:

Bước 1. Tìm tập xác định của hàm số. 

Bước 2. Xét sự biến thiên của hàm số 

‒ Tìm đạo hàm \(y'\), xét dấu \(y'\), xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.

‒ Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và tìm các đường tiệm cận của đồ thị hàm số (nếu có). 

‒ Lập bảng biến thiên của hàm số. 

Bước 3. Vẽ đồ thị hàm số 

‒ Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ (nếu có và dễ tìm),… 

‒ Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).

‒ Vẽ đồ thị hàm số.

Lời giải chi tiết

a) \(y = x\left( {{x^2} - 4x} \right) = {x^3} - 4{x^2}\)

1. Tập xác định: \(\mathbb{R}\).

2. Sự biến thiên:

• Chiều biến thiên:

Đạo hàm \(y' = 3{{\rm{x}}^2} - 8{\rm{x}};y' = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = \frac{8}{3}\).

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {\frac{8}{3}; + \infty } \right)\), \(y' > 0\) nên hàm số đồng biến trên mỗi khoảng đó.

Trên khoảng \(\left( {0;\frac{8}{3}} \right)\), \(y' < 0\) nên hàm số nghịch biến trên khoảng đó.

• Cực trị:

Hàm số đạt cực đại tại \(x = 0\) và ${{y}_{CĐ}}=0$.

Hàm số đạt cực tiểu tại \(x = \frac{8}{3}\) và \({y_{CT}} =  - \frac{{256}}{{27}}\).

• Các giới hạn tại vô cực:

\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } {x^3}\left( {1 - \frac{4}{x}} \right) =  - \infty ;\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } {x^3}\left( {1 - \frac{4}{x}} \right) =  + \infty \).

• Bảng biến thiên:

3. Đồ thị

Khi \(x = 0\) thì \(y = 0\) nên \(\left( {0;0} \right)\) là giao điểm của đồ thị với trục \(Oy\).

Ta có \(y = 0 \Leftrightarrow {x^3} - 4{{\rm{x}}^2} = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = 4\).

Vậy đồ thị hàm số giao với trục \(Ox\) tại hai điểm \(\left( {0;0} \right)\) và \(\left( {4;0} \right)\).

Điểm \(\left( {0;0} \right)\) là điểm cực đại và điểm \(\left( {\frac{8}{3}; - \frac{{256}}{{27}}} \right)\) là điểm cực tiểu của đồ thị hàm số.

Vậy đồ thị hàm số được biểu diễn như hình vẽ bên.

Đồ thị của hàm số có tâm đối xứng là điểm \(I\left( {\frac{4}{3}; - \frac{{128}}{{27}}} \right)\).

b) \(y =  - {x^3} + 3{x^2} - 2\)

1. Tập xác định: \(\mathbb{R}\).

2. Sự biến thiên:

• Chiều biến thiên:

Đạo hàm \(y' =  - 3{{\rm{x}}^2} + 6{\rm{x}};y' = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = 2\).

Trên khoảng \(\left( {0;2} \right)\), \(y' > 0\) nên hàm số đồng biến trên khoảng đó.

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\), \(y' < 0\) nên hàm số nghịch biến trên mỗi khoảng đó.

• Cực trị:

Hàm số đạt cực đại tại \(x = 2\) và ${{y}_{CĐ}}=4$.

Hàm số đạt cực tiểu tại \(x = 0\) và \({y_{CT}} = 0\).

• Các giới hạn tại vô cực:

\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } {x^3}\left( { - 1 + \frac{3}{x} - \frac{2}{{{x^3}}}} \right) =  + \infty ;\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } {x^3}\left( { - 1 + \frac{3}{x} - \frac{2}{{{x^3}}}} \right) =  - \infty \).

• Bảng biến thiên:

3. Đồ thị

Khi \(x = 0\) thì \(y = 0\) nên \(\left( {0;0} \right)\) là giao điểm của đồ thị với trục \(Oy\).

Ta có \(y = 0 \Leftrightarrow  - {x^3} + 3{{\rm{x}}^2} = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = 3\).

Vậy đồ thị hàm số giao với trục \(Ox\) tại hai điểm \(\left( {0;0} \right)\) và \(\left( {3;0} \right)\).

Điểm \(\left( {2;4} \right)\) là điểm cực đại và điểm \(\left( {0;0} \right)\) là điểm cực tiểu của đồ thị hàm số.

Vậy đồ thị hàm số được biểu diễn như hình vẽ bên.

Đồ thị của hàm số có tâm đối xứng là điểm \(I\left( {2;2} \right)\).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close