Giải bài 5 trang 31 sách bài tập toán 12 - Chân trời sáng tạo

Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = 3 + frac{1}{x}); b) (y = 2 - frac{1}{{1 + x}}).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Khảo sát và vẽ đồ thị của các hàm số sau:

a) \(y = 3 + \frac{1}{x}\);

b) \(y = 2 - \frac{1}{{1 + x}}\).

Phương pháp giải - Xem chi tiết

Sơ đồ khảo sát hàm số:

Bước 1. Tìm tập xác định của hàm số. 

Bước 2. Xét sự biến thiên của hàm số 

‒ Tìm đạo hàm \(y'\), xét dấu \(y'\), xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.

‒ Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và tìm các đường tiệm cận của đồ thị hàm số (nếu có). 

‒ Lập bảng biến thiên của hàm số. 

Bước 3. Vẽ đồ thị hàm số 

‒ Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ (nếu có và dễ tìm),… 

‒ Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).

‒ Vẽ đồ thị hàm số.

Lời giải chi tiết

a)

1. Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

2. Sự biến thiên:

• Chiều biến thiên:

Đạo hàm \(y' =  - \frac{1}{{{x^2}}}\). Vì \(y' < 0\) với mọi \(x \ne 0\) nên hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

• Tiệm cận:

Ta có:  \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \left( {3 + \frac{1}{x}} \right) =  - \infty ;\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \left( {3 + \frac{1}{x}} \right) =  + \infty \)

Vậy \(x = 0\) là tiệm cận đứng của đồ thị hàm số đã cho.

Ta có:  \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {3 + \frac{1}{x}} \right) = 3;\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {3 + \frac{1}{x}} \right) = 3\)

Vậy \(y = 3\) là tiệm cận ngang của đồ thị hàm số đã cho.

• Bảng biến thiên:

3. Đồ thị

Vậy đồ thị hàm số giao với trục \(Ox\) tại điểm \(\left( { - \frac{1}{3};0} \right)\), đồ thị hàm số không có giao điểm với trục \(Oy\).

Vậy đồ thị hàm số được biểu diễn như hình vẽ.

Đồ thị của hàm số có tâm đối xứng là điểm \(I\left( {0;3} \right)\).

b) \(y = 2 - \frac{1}{{1 + x}}\)

1. Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

2. Sự biến thiên:

• Chiều biến thiên:

Đạo hàm \(y' = \frac{1}{{{{\left( {1 + x} \right)}^2}}}\). Vì \(y' > 0\) với mọi \(x \ne  - 1\) nên hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

• Tiệm cận:

Ta có:  \(\mathop {\lim }\limits_{x \to  - {1^ - }} y = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {2 - \frac{1}{{1 + x}}} \right) =  + \infty ;\mathop {\lim }\limits_{x \to  - {1^ + }} y = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {2 - \frac{1}{{1 + x}}} \right) =  - \infty \)

Vậy \(x =  - 1\) là tiệm cận đứng của đồ thị hàm số đã cho.

Ta có:  \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {2 - \frac{1}{{1 + x}}} \right) = 2;\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {2 - \frac{1}{{1 + x}}} \right) = 2\)

Vậy \(y = 2\) là tiệm cận ngang của đồ thị hàm số đã cho.

• Bảng biến thiên:

3. Đồ thị

Vậy đồ thị hàm số giao với trục \(Ox\) tại điểm \(\left( { - \frac{1}{2};0} \right)\), số giao với trục \(Oy\) tại điểm \(\left( {0;1} \right)\).

Vậy đồ thị hàm số được biểu diễn như hình vẽ.

Đồ thị của hàm số có tâm đối xứng là điểm \(I\left( { - 1;2} \right)\).

  • Giải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Ta đã biết đồ thị hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận ngang là đường thẳng \(y = 2\). a) Tìm toạ độ giao điểm \(I\) của đường tiệm cận. b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). Tìm các tung độ \(y\left( {{x_M}} \right)\) và \(y\left( {{x_{M'}}} \right)\). Từ đó, chứng minh rằng hai đ

  • Giải bài 7 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số \(y = \frac{{2{\rm{x}} - 1}}{{ - x + 3}}\). Chứng tỏ rằng đường thẳng \(y = - x\) cắt đồ thị hàm số đã cho tại hai điểm phân biệt.

  • Giải bài 8 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = frac{{{x^2} - 2{rm{x}} + 2}}{{{rm{x}} - 1}}); b) (y = - 2{rm{x}} + frac{1}{{2{rm{x}} + 1}}).

  • Giải bài 9 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số \(y = \frac{{{x^2} + 2{\rm{x}} - 2}}{{{\rm{x}} - 1}}\) a) Tìm toạ độ giao điểm \(I\) của hai đường tiệm cận của đồ thị hàm số. b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). So sánh các tung độ \({y_M}\) và \({y_{M'}}\). Từ đó, suy ra rằng hai điểm \(M\) và \(M'\) đối xứng với nhau qua \(I\).

  • Giải bài 10 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số \(y = \frac{{\left( {m - 1} \right)x - 2}}{{m - 2 - x}}\) (\(m\) là tham số). Tìm điều kiện của \(m\) để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close