Giải bài 10 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

Cho hàm số \(y = \frac{{\left( {m - 1} \right)x - 2}}{{m - 2 - x}}\) (\(m\) là tham số). Tìm điều kiện của \(m\) để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Cho hàm số \(y = \frac{{\left( {m - 1} \right)x - 2}}{{m - 2 - x}}\) (\(m\) là tham số). Tìm điều kiện của \(m\) để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\).

Phương pháp giải - Xem chi tiết

‒ Để đồ thị hàm số \(y = \frac{{ax + b}}{{c{\rm{x}} + d}}\left( {a{\rm{d}} - bc \ne 0} \right)\) có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\) thì hàm số nghịch biến, có tiệm cận đứng không nằm bên trái trục \(Oy\) và có tiệm cận ngang không nằm bên dưới trục \(Ox\).

Lời giải chi tiết

Ta có: \(y' = \frac{{\left( {m - 1} \right)\left( {m - 2} \right) - \left( { - 2} \right).\left( { - 1} \right)}}{{{{\left( {m - 2 - x} \right)}^2}}} = \frac{{{m^2} - 3m}}{{{{\left( {m - 2 - x} \right)}^2}}}\)

Hàm số có đường thẳng \(x = m - 2\) là tiệm cận đứng và đường thẳng \(y = 1 - m\) là tiệm cận ngang.

Để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\) thì hàm số nghịch biến, có tiệm cận đứng không nằm bên trái trục \(Oy\) và có tiệm cận ngang không nằm bên dưới trục \(Ox\), tức là:

\(\left\{ \begin{array}{l}{m^2} - 3m < 0\\c =  - 1 \ne 0\\1 - m \ge 0\\m - 2 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < m < 3\\m \le 1\\m \ge 2\end{array} \right.\)

Do đó không có giáo trị nào của \(m\) để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\).

  • Giải bài 11 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số (y = frac{{{x^2} + 2{rm{x}} - m}}{{x - 1}}) ((m) là tham số). a) Tìm (m) để đồ thị hàm số đã cho có hai điểm cực trị. b) Chứng tỏ rằng khi (m = 2), hàm số có hai điểm cực trị. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số này.

  • Giải bài 9 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số \(y = \frac{{{x^2} + 2{\rm{x}} - 2}}{{{\rm{x}} - 1}}\) a) Tìm toạ độ giao điểm \(I\) của hai đường tiệm cận của đồ thị hàm số. b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). So sánh các tung độ \({y_M}\) và \({y_{M'}}\). Từ đó, suy ra rằng hai điểm \(M\) và \(M'\) đối xứng với nhau qua \(I\).

  • Giải bài 8 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = frac{{{x^2} - 2{rm{x}} + 2}}{{{rm{x}} - 1}}); b) (y = - 2{rm{x}} + frac{1}{{2{rm{x}} + 1}}).

  • Giải bài 7 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số \(y = \frac{{2{\rm{x}} - 1}}{{ - x + 3}}\). Chứng tỏ rằng đường thẳng \(y = - x\) cắt đồ thị hàm số đã cho tại hai điểm phân biệt.

  • Giải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Ta đã biết đồ thị hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận ngang là đường thẳng \(y = 2\). a) Tìm toạ độ giao điểm \(I\) của đường tiệm cận. b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). Tìm các tung độ \(y\left( {{x_M}} \right)\) và \(y\left( {{x_{M'}}} \right)\). Từ đó, chứng minh rằng hai đ

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close