Câu hỏi:
Hai xe ô tô cùng đi từ A đến B. Biết vận tốc của ô tô thứ nhất bằng 60% vận tốc của ô tô thứ hai và thời gian xe thứ nhất đi từ A đến B nhiều hơn thời gian ô tô thứ hai đi từ A đến B là 4 giờ. Tính thời gian xe thứ hai đi từ A đến B.
15 bài tập tổng hợp Một số bài toán về đại lượng tỉ lệ nghịch
Câu hỏi:
Để làm một công việc trong \(12\) giờ cần \(45\)công nhân. Nếu số công nhân tăng thêm \(15\) người (với năng suất như sau) thì thời gian để hoàn thành công việc giảm đi mấy giờ?
15 bài tập tổng hợp Một số bài toán về đại lượng tỉ lệ nghịch
Câu hỏi:
Ba đội máy cày, cày trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong \(4\) ngày, đội thứ hai trong \(6\)ngày và đội thứ \(3\) trong \(8\) ngày. Hỏi đội thứ nhất có bao nhiêu máy cày, biết rằng đội thứ nhất có nhiều hơn đội thứ hai là \(2\)máy và công suất của các máy như nhau?
15 bài tập tổng hợp Một số bài toán về đại lượng tỉ lệ nghịch
Câu hỏi:
Một ô tô chạy từ A đến B với vận tốc \(50\) km/h thì hết \(2\)giờ \(15\)phút. Hỏi ô tô chạy từ A đến B với vận tốc \(45\) km/h thì hết bao nhiêu thời gian?
15 bài tập tổng hợp Một số bài toán về đại lượng tỉ lệ nghịch
Câu hỏi:
Cho biết \(y\) tỉ lệ với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) và \(x\) tỉ lệ với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\). Chọn câu đúng.
15 bài tập tổng hợp Một số bài toán về đại lượng tỉ lệ nghịch
Câu hỏi:
Để làm một công việc trong \(8\) giờ cần\(30\)công nhân. Nếu có \(40\)công nhân thì công việc đó được hoàn thành trong mấy giờ?
Câu hỏi:
Một ô tô đi quãng đường \(135\) km với vận tốc \(v\) (km/h) và thời gian \(t\) (h). Chọn câu đúng về mối quan hệ của \(v\) và \(t.\)
15 bài tập tổng hợp Một số bài toán về đại lượng tỉ lệ nghịch
Câu hỏi:
Cho hai đại lượng tỉ lệ nghịch \(x\) và \(y\); \({x_1}\) và \({x_2}\) là hai giá trị của \(x\); \({y_1}\) và \({y_2}\) là hai giá trị tương ứng của \(y\). Biết \({x_2} = - 4,{y_1} = - 10\)và \(3{x_1} - 2{y_2} = 32\). Tính \({x_1}\) và \({y_2}.\)
Câu hỏi:
Cho hai đại lượng tỉ lệ nghịch \(x\) và \(y\); \({x_1}\) và \({x_2}\) là hai giá trị của \(x\); \({y_1}\) và \({y_2}\) là hai giá trị tương ứng của \(y\). Biết \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\). Khi đó \({y_2} = ?\)
Câu hỏi:
Cho \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch với nhau. Khi \(x = - \frac{1}{2}\) thì \(y = 8\). Khi đó hệ số tỉ lệ \(a\) và công thức biểu diễn \(y\) theo \(x\) là: