Trắc nghiệm Bài 39: Hình chóp tứ giác đều Toán 8 Kết nối tri thức

Đề bài

Câu 1 :

Đáy của hình chóp tứ đều là hình gì?

  • A
    Hình vuông.
  • B
    Hình thang cân.
  • C
    Hình chữ nhật .       
  • D
    Tam giác đều.
Câu 2 :

Chân đường cao kẻ từ đỉnh của hình chóp tứ giác đều là?

  • A
    trung điểm của cạnh bên.
  • B
    trọng tâm của tam giác đáy.
  • C
    giao điểm hai đường chéo.
  • D
    một điểm bất kì trong mặt phẳng đáy.
Câu 3 :

Cho hình chóp tứ giác đều có p là nửa chu vi đáy, d là độ dài trung đoạn. Công thức tính diện tích xung quanh của hình chóp tứ giác đều bằng:

  • A
    \({S_{xq}} = \frac{p}{d}\).
  • B
    \({S_{xq}} = \frac{{2p}}{d}\).
  • C
    \({S_{xq}} = p.d\).
  • D
    . \({S_{xq}} = \frac{p}{2}.d\).
Câu 4 :

Cho hình chóp tứ giác đều, thể tích của hình chóp được tính bằng:

  • A
    \(\frac{1}{3}\) tích của diện tích mặt đáy với chiều cao.
  • B
    \(\frac{1}{3}\) tích của diện tích mặt đáy với trung đoạn.
  • C
    tích của diện tích mặt đáy với chiều cao.
  • D
    tích của diện tích mặt đáy với trung đoạn.
Câu 5 :

Hình chóp tứ giác đều có mấy mặt?

  • A
    3.
  • B
    4.
  • C
    5.
  • D
    6.
Câu 6 :

Trung đoạn của hình chóp tứ giác đều là:

  • A
    Đường cao kẻ từ đỉnh tới trọng tâm của mặt đáy.
  • B
    Đường cao kẻ từ đỉnh của mỗi mặt bên.
  • C
    Đường thẳng kẻ từ đỉnh tới trung điểm đường cao cạnh đáy.
  • D
    Đường thẳng kẻ từ đỉnh của hình chóp tới điểm bất kì trong mặt phẳng đáy.
Câu 7 :

Chọn câu trả lời sai:

  • A
    HM là trung đoạn của hình chóp tứ giác đều S.ABCD.
  • B
    SH là đường cao của hình chóp tứ giác đều S.ABCD.
  • C
    SM là trung đoạn của hình chóp tứ giác đều S.ABCD.
  • D
    Hình chóp tứ giác đều S.ABCD có mặt bên SAB là tam giác cân.
Câu 8 :

Cho hình chóp tứ giác đều có nửa chu vi đáy là \(20cm\), độ dài trung đoạn là \(5cm\). Tính diện tích xung quanh của hình chóp đó.

  • A
    \(50c{m^2}\).
  • B
    \(\frac{{100}}{3}c{m^2}\)
  • C
    \(200c{m^2}\).
  • D
    \(100c{m^2}\).
Câu 9 :

Cho hình chóp tứ giác đều S.ABCD biết SA = a, AB = 2a, chọn phát biểu đúng?

  • A
    \(SD = SA = a\).
  • B
    \(SB = AB = a\).
  • C
    \(SB = BC = 2a\).
  • D
    \(SB = SC = 2a\).
Câu 10 :

Cho hình chóp tứ giác đều có thể tích là \(50c{m^3}\), chiều cao hình chóp bằng \(5cm\). Tính diện tích mặt đáy của hình chóp đó.

  • A
    \(10c{m^2}\).
  • B
    \(30c{m^2}\)
  • C
    \(50c{m^2}\).
  • D
    \(\frac{{10}}{3}c{m^2}\).
Câu 11 :

Cho hình chóp tứ giác đều S.ABCD có các mặt bên là các tam giác đều diện tích\(10c{m^2}\). Tính diện tích xung quanh của hình chóp đó.

  • A
    \(10c{m^2}\)
  • B
    \(20c{m^2}\)
  • C
    \(40c{m^2}\)
  • D
    \(30c{m^2}\).
Câu 12 :

Cho hình chóp tứ giác đều có độ dài cạnh đáy là 3cm, độ dài trung đoạn bằng 5cm. Tính diện tích xung quanh hình chóp.

  • A
    \(10c{m^2}\)
  • B
    \(20c{m^2}\)
  • C
    \(40c{m^2}\)
  • D
    \(30c{m^2}\).
Câu 13 :

Cho hình chóp tứ giác đều có độ dài trung đoạn d, diện tích xung quanh là S. Chu vi đáy C bằng:

  • A
    \(C = {S_{xq}}.d\)
  • B
    \(C = \frac{{{S_{xq}}}}{{2d}}\)
  • C
    \(C = \frac{{{S_{xq}}}}{d}\)
  • D
    \(C = \frac{{2{S_{xq}}}}{d}\).
Câu 14 :

Cho khối chóp tứ giác đều, nếu tăng cạnh đáy lên ba lần và giảm chiều cao đi ba lần thì thể tích của khối chóp sẽ:

  • A
    Giảm đi 9 lần.
  • B
    Tăng lên 3 lần.
  • C
    Giảm đi 3 lần.
  • D
    Tăng lên 9 lần.
Câu 15 :

Chọn phát biểu sai trong các phát biểu sau:

  • A
    Hình chóp tứ giác đều có các mặt bên là tam giác cân.
  • B
    Đường cao của hình chóp tứ giác đều là đoạn thẳng nối đỉnh của hình chóp và trung điểm một cạnh đáy.
  • C
    Đường cao kẻ từ đỉnh của mỗi mặt bên gọi là trung đoạn của hình chóp tứ giác đều.
  • D
    Diện tích xung quanh của hình chóp tứ giác đều bằng tích của nửa chu vi đáy với trung đoạn.
Câu 16 :

Một hình chóp tứ giác đều có thể tích bằng \(32c{m^3}\), chiều cao hình chóp bằng 6cm, chiều cao mặt bên bằng 10cm. Tính diện tích xung quanh hình chóp đó.

  • A
    \(40(c{m^2})\)
  • B
    \(50(c{m^2})\)
  • C
    \(60(c{m^2})\)
  • D
    \(80(c{m^2})\)
Câu 17 :

Cho hình chóp tứ giác đều S. ABCD có diện tích xung quanh bằng \(72c{m^2}\) , chiều cao có độ dài bằng 6cm, độ dài trung đoạn băng 4cm. Thể tích của khối chóp đó là?

  • A
    \(36c{m^3}\).
  • B
    \(162c{m^3}\).
  • C
    \(162\sqrt 3 c{m^3}\).
  • D
    \(72c{m^3}\).
Câu 18 :

Tính diện tích toàn phần của hình chóp tứ giác đều biết cạnh đáy bằng 6cm, độ dài trung đoạn bằng 4cm.

  • A
    \(45c{m^2}\).
  • B
    \(81c{m^2}\).
  • C
    \(36c{m^2}\).
  • D

    \(84c{m^2}\).

Câu 19 :

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 4cm và chiều cao bằng 5cm.  Tính độ dài trung đoạn của hình chóp đó.

  • A
    \(\frac{{\sqrt {17} }}{2}cm\).
  • B
    \(\sqrt {33} cm\).
  • C
    \(\sqrt {29} cm\).
  • D
    \(5cm\).
Câu 20 :

Cho hình chóp tứ giác đều S. ABCD có chu vi đáy là 20cm, chiều cao có số đo gấp 3 lần cạnh đáy. Thể tích của khối chóp đó là?

  • A
    \(80c{m^3}\).
  • B
    \(125c{m^3}\).
  • C
    \(25c{m^3}\).
  • D
    \(375c{m^3}\).
Câu 21 :

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau và bằng a.  Thể tích V của khối chóp S.ABC.

  • A
    \(\frac{{{a^3}\sqrt 3 }}{2}\).
  • B
    \(\frac{{{a^3}\sqrt 3 }}{6}\).
  • C
    \(\frac{{{a^3}\sqrt 2 }}{6}\).
  • D
    \(\frac{{{a^3}}}{6}\).
Câu 22 :

Cho mô hình dạng hình chóp tứ giác đều có diện tích bằng \(3600c{m^2}\), trung đoạn của khối gỗ là 80cm. Bạn Nam định sơn 4 mặt khối gỗ đó bằng sơn màu vàng, biết mỗi mét vuông bạn phải trả 50000 đồng tiền sơn.  Hỏi bạn Nam sơn hết bao nhiêu tiền?

  • A
    48000 đồng.
  • B
    96000 đồng.
  • C
    24000 đồng.
  • D
    144000 đồng.
Câu 23 :

Người ta làm một bugalow dạng hình chóp tứ giác đều có chiều cao 4m, cạnh sàn nhà bằng 6m. Người ta chia đôi làm hai tầng bằng một mặt phẳng song song với sàn, cách đỉnh của hình chóp một khoảng bằng nửa chiều cao, cạnh mặt sàn tầng hai bằng một nửa cạnh mặt sàn tầng một. Biết một người cần \(3{m^3}\)không khí, tính số người tối đa ở tầng dưới. ( hình vẽ dưới)

  • A
    16 người.
  • B
    20 người.
  • C
    18 người.
  • D
    14 người.
Câu 24 :

Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy bằng a, cạnh bên bằng 2a. Gọi I, H lần lượt là trung điểm cạnh AB, CD. Tính thể tích V của khối chóp S.IBCH.

  • A
    \(V = \frac{{{a^3}\sqrt 2 }}{{12}}\).
  • B
    \(V = \frac{{{a^3}\sqrt 2 }}{6}\).
  • C
    \(V = \frac{{{a^3}\sqrt 2 }}{4}\).
  • D
    \(V = \frac{{{a^3}\sqrt 2 }}{8}\).

Lời giải và đáp án

Câu 1 :

Đáy của hình chóp tứ đều là hình gì?

  • A
    Hình vuông.
  • B
    Hình thang cân.
  • C
    Hình chữ nhật .       
  • D
    Tam giác đều.

Đáp án : A

Phương pháp giải :

Sử dụng định nghĩa hình tứ giác đều: Hình chóp tứ giác đều có đáy là hình vuông, các mặt bên là các tam giác cân bằng nhau có chung đỉnh.

Lời giải chi tiết :

Theo định nghĩa hình chóp tứ giác đều, mặt đáy là hình vuông.

Câu 2 :

Chân đường cao kẻ từ đỉnh của hình chóp tứ giác đều là?

  • A
    trung điểm của cạnh bên.
  • B
    trọng tâm của tam giác đáy.
  • C
    giao điểm hai đường chéo.
  • D
    một điểm bất kì trong mặt phẳng đáy.

Đáp án : C

Phương pháp giải :

Sử dụng định nghĩa đường cao của hình chóp tứ giác đều: Chân đường cao kẻ từ đỉnh tới mặt đáy của hình chóp tứ giác đều là điểm cách đều các đỉnh của mặt đáy ( giao điểm hai đường chéo)

Lời giải chi tiết :

Theo định nghĩa: Chân đường cao kẻ từ đỉnh tới mặt đáy của hình chóp tứ giác đều là giao điểm hai đường chéo nên chọn đáp án C

Câu 3 :

Cho hình chóp tứ giác đều có p là nửa chu vi đáy, d là độ dài trung đoạn. Công thức tính diện tích xung quanh của hình chóp tứ giác đều bằng:

  • A
    \({S_{xq}} = \frac{p}{d}\).
  • B
    \({S_{xq}} = \frac{{2p}}{d}\).
  • C
    \({S_{xq}} = p.d\).
  • D
    . \({S_{xq}} = \frac{p}{2}.d\).

Đáp án : C

Phương pháp giải :

Sử dụng công thức tính diện tích xung quanh của hình chóp tứ giác đều

Lời giải chi tiết :

Diện tích xung quanh của hình chóp tứ giác đều bằng tích của nửa chu vi đáy với trung đoạn nên chọn đáp án C

Câu 4 :

Cho hình chóp tứ giác đều, thể tích của hình chóp được tính bằng:

  • A
    \(\frac{1}{3}\) tích của diện tích mặt đáy với chiều cao.
  • B
    \(\frac{1}{3}\) tích của diện tích mặt đáy với trung đoạn.
  • C
    tích của diện tích mặt đáy với chiều cao.
  • D
    tích của diện tích mặt đáy với trung đoạn.

Đáp án : A

Phương pháp giải :

Sử dụng công thức tính thể tích của hình chóp tứ giác đều.

Lời giải chi tiết :

Thể tích của hình chóp tứ giác đều bằng \(\frac{1}{3}\) tích của diện tích đáy với chiều cao của nó nên chọn đáp án A

Câu 5 :

Hình chóp tứ giác đều có mấy mặt?

  • A
    3.
  • B
    4.
  • C
    5.
  • D
    6.

Đáp án : C

Phương pháp giải :

Sử dụng định nghĩa hình chóp tứ giác đều.

Lời giải chi tiết :

Theo định nghĩa hình chóp tứ giác đều thì chọn đáp án C

Câu 6 :

Trung đoạn của hình chóp tứ giác đều là:

  • A
    Đường cao kẻ từ đỉnh tới trọng tâm của mặt đáy.
  • B
    Đường cao kẻ từ đỉnh của mỗi mặt bên.
  • C
    Đường thẳng kẻ từ đỉnh tới trung điểm đường cao cạnh đáy.
  • D
    Đường thẳng kẻ từ đỉnh của hình chóp tới điểm bất kì trong mặt phẳng đáy.

Đáp án : B

Phương pháp giải :

Sử dụng định nghĩa trung đoạn của hình chóp tứ giác đều: Đường cao kẻ từ đỉnh của mỗi mặt bên gọi là trung đoạn của hình chóp tứ giác đều.

Lời giải chi tiết :

Theo định nghĩa trung đoạn của hình chóp tứ giác đều thì chọn đáp án B.

Câu 7 :

Chọn câu trả lời sai:

  • A
    HM là trung đoạn của hình chóp tứ giác đều S.ABCD.
  • B
    SH là đường cao của hình chóp tứ giác đều S.ABCD.
  • C
    SM là trung đoạn của hình chóp tứ giác đều S.ABCD.
  • D
    Hình chóp tứ giác đều S.ABCD có mặt bên SAB là tam giác cân.

Đáp án : A

Phương pháp giải :

Sử dụng định nghĩa hình chóp tứ giác đều, đường cao, trung đoạn của hình chóp tứ giác đều.

Lời giải chi tiết :

Theo định nghĩa trung đoạn của hình chóp tam giác đều thì trung đoạn của hình chóp S.ABCD là đoạn SH nên A sai

Câu 8 :

Cho hình chóp tứ giác đều có nửa chu vi đáy là \(20cm\), độ dài trung đoạn là \(5cm\). Tính diện tích xung quanh của hình chóp đó.

  • A
    \(50c{m^2}\).
  • B
    \(\frac{{100}}{3}c{m^2}\)
  • C
    \(200c{m^2}\).
  • D
    \(100c{m^2}\).

Đáp án : D

Phương pháp giải :

Sử dụng công thức tính diện tích xung quanh của hình chóp tam giác đều: \({S_{xq}} = p.d\)

Lời giải chi tiết :

Theo công thức tính diện tích xung quanh của hình chóp tam giác đều:

\({S_{xq}} = p.d = 20.5 = 100c{m^2}\)

Câu 9 :

Cho hình chóp tứ giác đều S.ABCD biết SA = a, AB = 2a, chọn phát biểu đúng?

  • A
    \(SD = SA = a\).
  • B
    \(SB = AB = a\).
  • C
    \(SB = BC = 2a\).
  • D
    \(SB = SC = 2a\).

Đáp án : A

Phương pháp giải :

Sử dụng kiến thức về các cạnh của hình chóp tứ giác đều: Hình chóp tứ giác đều có đáy là hình vuông, các mặt bên là các tam giác cân bằng nhau có chung đỉnh.

Lời giải chi tiết :

Hình chóp tam giác đều S.ABCD có đáy ABCD là hình vuông nên\(CD = DA = BC = AB = 2a\)

Hình chóp tứ giác đều có các mặt bên là các tam giác cân bằng nhau có chung đỉnh nên \(SB = SC = SA = SD = a\).

nên chọn đáp án A đúng

Câu 10 :

Cho hình chóp tứ giác đều có thể tích là \(50c{m^3}\), chiều cao hình chóp bằng \(5cm\). Tính diện tích mặt đáy của hình chóp đó.

  • A
    \(10c{m^2}\).
  • B
    \(30c{m^2}\)
  • C
    \(50c{m^2}\).
  • D
    \(\frac{{10}}{3}c{m^2}\).

Đáp án : B

Phương pháp giải :

Sử dụng công thức tính thể tích của hình chóp tứ giác đều: \(V = \frac{1}{3}.S.h\)

Lời giải chi tiết :

Theo công thức tính thể tích của hình chóp tứ giác đều: \(V = \frac{1}{3}.S.h\)

\( =  > S = \frac{{3V}}{h} = \frac{{3.50}}{5} = 30c{m^2}\)

Câu 11 :

Cho hình chóp tứ giác đều S.ABCD có các mặt bên là các tam giác đều diện tích\(10c{m^2}\). Tính diện tích xung quanh của hình chóp đó.

  • A
    \(10c{m^2}\)
  • B
    \(20c{m^2}\)
  • C
    \(40c{m^2}\)
  • D
    \(30c{m^2}\).

Đáp án : C

Phương pháp giải :

Dựa vào đặc điểm của hình chóp tứ giác đều.

Lời giải chi tiết :

Hình chóp S.ABCD là hình chóp tứ giác đều, có 4 mặt bên, các mặt là các tam giác đều nên diện tích các mặt bằng nhau và cùng bằng \(10c{m^2}\). Vậy diện tích xung quanh của hình chóp S.ABCD là \(4.10 = 40c{m^2}\)

Câu 12 :

Cho hình chóp tứ giác đều có độ dài cạnh đáy là 3cm, độ dài trung đoạn bằng 5cm. Tính diện tích xung quanh hình chóp.

  • A
    \(10c{m^2}\)
  • B
    \(20c{m^2}\)
  • C
    \(40c{m^2}\)
  • D
    \(30c{m^2}\).

Đáp án : D

Phương pháp giải :

Dựa vào công thức tính diện tích xung quanh của hình chóp tứ giác đều:\({S_{xq}} = p.d\)

Lời giải chi tiết :

Nửa chu vi đáy của hình chóp: \(p = \frac{{3.4}}{2} = 6cm\)

Vậy diện tích xung quanh của hình chóp đã cho là \({S_{xq}} = p.d = 6.5 = 30c{m^2}\)

Câu 13 :

Cho hình chóp tứ giác đều có độ dài trung đoạn d, diện tích xung quanh là S. Chu vi đáy C bằng:

  • A
    \(C = {S_{xq}}.d\)
  • B
    \(C = \frac{{{S_{xq}}}}{{2d}}\)
  • C
    \(C = \frac{{{S_{xq}}}}{d}\)
  • D
    \(C = \frac{{2{S_{xq}}}}{d}\).

Đáp án : D

Phương pháp giải :

Dựa vào công thức diện tích xung quanh của hình chóp tứ giác đều: \({S_{xq}} = p.d\)

Lời giải chi tiết :

Gọi p là nửa chu vi đáy

\({S_{xq}} = p.d\) suy ra \( p = \frac{{{S_{xq}}}}{d}\)

mà \(C = 2p \) suy ra \( C = \frac{{2{S_{xq}}}}{d}\)

Câu 14 :

Cho khối chóp tứ giác đều, nếu tăng cạnh đáy lên ba lần và giảm chiều cao đi ba lần thì thể tích của khối chóp sẽ:

  • A
    Giảm đi 9 lần.
  • B
    Tăng lên 3 lần.
  • C
    Giảm đi 3 lần.
  • D
    Tăng lên 9 lần.

Đáp án : B

Phương pháp giải :

Dựa vào công thức tính thể tích khối chóp

Lời giải chi tiết :

Thể tích khối chóp tứ giác ban đầu là: \(V = \frac{1}{3}S.h = \frac{1}{3}a^2.h\)

\(S = a^2\) là diện tích đáy, h là chiều cao.

Nếu cạnh đáy tăng lên 3 lần thì diện tích đáy tăng 9 lần:

\(S_{mới} = (3a)^2 = 9a^2\).

Vì chiều cao giảm đi 3 lần nên \(h_{mới} = \frac{h}{3}\).

Khi đó, thể tích khối chóp mới là:

\(V_{mới} = \frac{1}{3}S_{mới}.h_{mới} = \frac{1}{3}. 9a^2.\frac{h}{3} = a^2h\)

Ta có: \(\frac{V_{mới}}{V} = \frac{a^2h}{\frac{1}{3}a^2.h} = 3\)

Vậy nếu cạnh đáy tăng lên 3 lần và chiều cao giảm đi 3 lần thì thể tích khối chóp tăng lên 3 lần.

Câu 15 :

Chọn phát biểu sai trong các phát biểu sau:

  • A
    Hình chóp tứ giác đều có các mặt bên là tam giác cân.
  • B
    Đường cao của hình chóp tứ giác đều là đoạn thẳng nối đỉnh của hình chóp và trung điểm một cạnh đáy.
  • C
    Đường cao kẻ từ đỉnh của mỗi mặt bên gọi là trung đoạn của hình chóp tứ giác đều.
  • D
    Diện tích xung quanh của hình chóp tứ giác đều bằng tích của nửa chu vi đáy với trung đoạn.

Đáp án : B

Phương pháp giải :

Dựa vào khái niệm hình chóp tứ giác đều, đường cao, trung đoạn, công thức tính diện tích xung quanh của hình chóp tứ giác đều.

Lời giải chi tiết :

Hình chóp tứ giác đều có đáy là hình vuông, các mặt bên là các tam giác cân bằng nhau có chung đỉnh nên câu A đúng,

Chân đường cao của hình chóp là điểm cách đều mỗi đỉnh của đáy nên câu B sai.

Đường cao kẻ từ đỉnh của mỗi mặt bên gọi là trung đoạn của hình chóp tứ giác đều nên câu C đúng.

Diện tích xung quanh của hình chóp tứ giác đều bằng tích của nửa chu vi đáy với trung đoạn nên câu D đúng.

Câu 16 :

Một hình chóp tứ giác đều có thể tích bằng \(32c{m^3}\), chiều cao hình chóp bằng 6cm, chiều cao mặt bên bằng 10cm. Tính diện tích xung quanh hình chóp đó.

  • A
    \(40(c{m^2})\)
  • B
    \(50(c{m^2})\)
  • C
    \(60(c{m^2})\)
  • D
    \(80(c{m^2})\)

Đáp án : D

Phương pháp giải :

B1: Tính diện tích đáy.

B2: Gọi x là độ dài cạnh đáy , tính diện tích đáy theo x, từ đó tìm được x.

B3: Tính diện tích một mặt bên.

B4: Tính diện tích xung quanh của hình chóp.

Lời giải chi tiết :

Diện tích đáy của hình chóp là : \(3.32:6 = 16c{m^2}\)

Gọi x là độ dài cạnh đáy, vì đáy hình chóp tứ giác đều là hình vuông nên ta có

\({x^2} = 16 \Rightarrow x = 4cm\).

Diện tích một mặt bên là: \(S = \frac{1}{2}.4.10 = 20(c{m^2})\)

Diện tích xung quanh của hình chóp trên là:  \({S_{xq}} = 4.S = 4.20 = 80(c{m^2})\)

Câu 17 :

Cho hình chóp tứ giác đều S. ABCD có diện tích xung quanh bằng \(72c{m^2}\) , chiều cao có độ dài bằng 6cm, độ dài trung đoạn băng 4cm. Thể tích của khối chóp đó là?

  • A
    \(36c{m^3}\).
  • B
    \(162c{m^3}\).
  • C
    \(162\sqrt 3 c{m^3}\).
  • D
    \(72c{m^3}\).

Đáp án : B

Phương pháp giải :

B1: Tính độ dài cạnh đáy.

B2: Tính diện tích mặt đáy.

B3: Tính thể tích hình chóp đều theo công thức.

Lời giải chi tiết :

Gọi x là độ dài cạnh đáy, khi đó chu vi đáy bằng: 4x \( =  > p = 2x\).

Diện tích xung quanh của hình chóp là: \({S_{xq}} = 72c{m^2}\)

\(\begin{array}{l} \Rightarrow p.d = 72\\ \Rightarrow 2x.4 = 72\\ \Rightarrow x = 9(cm)\end{array}\)

Độ dài cạnh đáy là: \(18.2:4 = 9cm\)

Diện tích mặt đáy là: \({S_{ABCD}} = 9.9 = 81c{m^2}\)

Áp dụng công thức thể tích khối chóp ta được: \(V = \frac{1}{3}.81.6 = 162c{m^3}\)

Câu 18 :

Tính diện tích toàn phần của hình chóp tứ giác đều biết cạnh đáy bằng 6cm, độ dài trung đoạn bằng 4cm.

  • A
    \(45c{m^2}\).
  • B
    \(81c{m^2}\).
  • C
    \(36c{m^2}\).
  • D

    \(84c{m^2}\).

Đáp án : D

Phương pháp giải :

B1: Tính nửa chu vi đáy

B2: Tính diện tích xung quanh của hình chóp đều: \({S_{xq}} = p.d\)

B3: Tính diện tích đáy

B4: Tính diện tích toàn phần của hình chóp tứ giác đều: \({S_{tp}} = {S_{xq}} + {S_{đáy}}\)

Lời giải chi tiết :

Nửa chu vi đáy của hình chóp: \(p = \frac{{6.4}}{2} = 12cm\)

Diện tích xung quanh của hình chóp là \({S_{xq}} = p.d = 12.4 = 48c{m^2}\)

Diện tích đáy của hình chóp là: \({S_{đáy}} = 6.6 = 36c{m^2}\)

Diện tích toàn phần của hình chóp tứ giác đều: \({S_{tp}} = {S_{xq}} + {S_{đáy}} = 48 + 36 = 84c{m^2}\)

Câu 19 :

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 4cm và chiều cao bằng 5cm.  Tính độ dài trung đoạn của hình chóp đó.

  • A
    \(\frac{{\sqrt {17} }}{2}cm\).
  • B
    \(\sqrt {33} cm\).
  • C
    \(\sqrt {29} cm\).
  • D
    \(5cm\).

Đáp án : C

Phương pháp giải :

Sử dụng kiến thức về hình chóp đều, định lý Pythagore và độ dài trung đoạn để tính.

Lời giải chi tiết :

Gọi H là giao hai đường chéo của hình vuông ABCD , M là trung điểm AB.

Vì S.ABCD là hình chóp tứ giác đều nên các mặt bên là tam giác cân => tam giác SAB cân tại S => SM vừa là trung tuyến vừa là đường cao.

Xét tam giác vuông ABC có: \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{4^2} + {4^2}}  = 4\sqrt 2  \Rightarrow AH = \frac{1}{2}.AC = 2\sqrt 2 cm\)

SH là chiều cao của hình chóp \( \Rightarrow SH = 5cm\)

Xét tam giác vuông SHA có: \(SA = \sqrt {S{H^2} + A{H^2}}  = \sqrt {{5^2} + {{(2\sqrt 2 )}^2}}  = \sqrt {33} cm\)

Xét tam giác vuông SAM có: \(SM = \sqrt {S{A^2} - A{M^2}}  = \sqrt {{{(\sqrt {33} )}^2} - {{(2)}^2}}  = \sqrt {29} cm\)

Câu 20 :

Cho hình chóp tứ giác đều S. ABCD có chu vi đáy là 20cm, chiều cao có số đo gấp 3 lần cạnh đáy. Thể tích của khối chóp đó là?

  • A
    \(80c{m^3}\).
  • B
    \(125c{m^3}\).
  • C
    \(25c{m^3}\).
  • D
    \(375c{m^3}\).

Đáp án : B

Phương pháp giải :

B1: Tính độ dài cạnh đáy và diện tích đáy.

B2: Tính chiều cao h của hình chóp tứ giác đều theo giả thiết

B3. Áp dụng công thức thể tích khối chóp \(V = \frac{1}{3}.S.h\)

Lời giải chi tiết :

Vì đáy hình chóp tứ giác đều S. ABCD là hình vuông, nên độ dài cạnh đáy là: \(20:4 = 5cm\)

Diện tích đáy hình chóp tứ giác đều là: \(S = 5.5 = 25c{m^2}\)

Chiều cao có số đo gấp 3 lần cạnh đáy nên h = 3.5=15cm

Áp dụng công thức thể tích khối chóp ta được: \(V = \frac{1}{3}.S.h = \frac{1}{3}.25.15 = 125c{m^3}\)

Câu 21 :

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau và bằng a.  Thể tích V của khối chóp S.ABC.

  • A
    \(\frac{{{a^3}\sqrt 3 }}{2}\).
  • B
    \(\frac{{{a^3}\sqrt 3 }}{6}\).
  • C
    \(\frac{{{a^3}\sqrt 2 }}{6}\).
  • D
    \(\frac{{{a^3}}}{6}\).

Đáp án : C

Phương pháp giải :

Sử dụng kiến thức về hình chóp tứ giác đều, định lý Pythagore và diện tích tam giác đều để tính.

Lời giải chi tiết :

Gọi O là giao hai đường chéo của hình vuông ABCD , M là trung điểm BC.

Khi đó SO là chiều cao của hình chóp.

\(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\(AO = \frac{1}{2}.AC = \frac{1}{2}.a\sqrt 2  = \frac{{a\sqrt 2 }}{2}\)

\(SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {{a^2} - {{(\frac{{a\sqrt 2 }}{2})}^2}}  = \frac{{a\sqrt 2 }}{2}\)

Đáy ABCD là hình vuông nên diện tích đáy là: \({S_{ABCD}} = a.a = {a^2}\)

\({V_{ABCD}} = \frac{1}{3}.{S_{ABCD}}.SO = \frac{1}{3}.{a^2}.\frac{{a\sqrt 2 }}{2} = \frac{{{a^3}\sqrt 2 }}{6}\)

Câu 22 :

Cho mô hình dạng hình chóp tứ giác đều có diện tích bằng \(3600c{m^2}\), trung đoạn của khối gỗ là 80cm. Bạn Nam định sơn 4 mặt khối gỗ đó bằng sơn màu vàng, biết mỗi mét vuông bạn phải trả 50000 đồng tiền sơn.  Hỏi bạn Nam sơn hết bao nhiêu tiền?

  • A
    48000 đồng.
  • B
    96000 đồng.
  • C
    24000 đồng.
  • D
    144000 đồng.

Đáp án : A

Phương pháp giải :

Sử dụng kiến thức về hình chóp tứ giác đều, chu vi, diện tích hình vuông và công thức tính diện tích xung quanh để tính.

B1: Tính độ dài cạnh đáy hình chóp.

B2: Tính nửa chu vi mặt đáy.

B3: Tính diện tích xung quanh của khối gỗ.

B4: Tính số tiền Nam cần phải trả.

Lời giải chi tiết :

Vì \(60.60 = 3600\) nên cạnh của mặt đáy bằng 60cm.

Chu vi mặt đáy là: \(C = 60.4 = 240(c{m^2}) \Rightarrow p = \frac{C}{2} = \frac{{240}}{2} = 120(c{m^2})\)

\({S_{xq}} = p.d = 120.80 = 9600c{m^2} = 0,96{m^2}\)

Bạn Nam sơn hết bao nhiêu tiền là: \(0,96.50000 = 48000\)(đồng)

Câu 23 :

Người ta làm một bugalow dạng hình chóp tứ giác đều có chiều cao 4m, cạnh sàn nhà bằng 6m. Người ta chia đôi làm hai tầng bằng một mặt phẳng song song với sàn, cách đỉnh của hình chóp một khoảng bằng nửa chiều cao, cạnh mặt sàn tầng hai bằng một nửa cạnh mặt sàn tầng một. Biết một người cần \(3{m^3}\)không khí, tính số người tối đa ở tầng dưới. ( hình vẽ dưới)

  • A
    16 người.
  • B
    20 người.
  • C
    18 người.
  • D
    14 người.

Đáp án : D

Phương pháp giải :

Sử dụng kiến thức về hình chóp tứ giác đều, thể tích hình chóp đều để tính.

Lời giải chi tiết :

\(SH = 4m\)là chiều cao của bugalow

\( \Rightarrow SH' = \frac{{SH}}{2} = 2m\)

\(A'B' = \frac{1}{2}.AB = \frac{1}{2}.6 = 3m\)

Ta có:

\(\begin{array}{l}{S_{A'B'C'D'}} = 3.3 = 9{m^2}\\{S_{ABCD}} = 6.6 = 36{m^2}\end{array}\)

\(\begin{array}{l}{V_{S.A'B'C'D'}} = \frac{1}{3}.{S_{A'B'C'D'}}.SH' = \frac{1}{3}.9.2 = 6{m^3}\\{V_{S.ABCD}} = \frac{1}{3}.{S_{ABCD}}.SH = \frac{1}{3}.36.4 = 48{m^3}\end{array}\)

Thể tích phần không gian còn lại ở tầng dưới là: \(V = {V_{S.ABCD}} - {V_{S.A'B'C'D'}} = 48 - 6 = 42{m^3}\)

Câu 24 :

Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy bằng a, cạnh bên bằng 2a. Gọi I, H lần lượt là trung điểm cạnh AB, CD. Tính thể tích V của khối chóp S.IBCH.

  • A
    \(V = \frac{{{a^3}\sqrt 2 }}{{12}}\).
  • B
    \(V = \frac{{{a^3}\sqrt 2 }}{6}\).
  • C
    \(V = \frac{{{a^3}\sqrt 2 }}{4}\).
  • D
    \(V = \frac{{{a^3}\sqrt 2 }}{8}\).

Đáp án : A

Phương pháp giải :

Sử dụng kiến thức về hình chóp đều, định lý Pythagore và diện tích tam giác đều để tính.

Lời giải chi tiết :

Tứ giác ABCD là hình vuông cạnh a nên diện tích ABCD bằng: \({S_{ABCD}} = {a^2}\)

Xét tam giác vuông ABC có: \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2  \Rightarrow AO = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác vuông SOA có: \(SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {{a^2} - {{(\frac{{a\sqrt 2 }}{2})}^2}}  = \frac{{a\sqrt 2 }}{2}\)

\({V_{SABCD}} = \frac{1}{3}.{S_{ABCD}}.SO = \frac{1}{3}.{a^2}.\frac{{a\sqrt 2 }}{2} = \frac{1}{3}.{a^2}.\frac{{a\sqrt 2 }}{2} = \frac{{{a^3}\sqrt 2 }}{6}\)

\(\frac{{{V_{SIBCH}}}}{{{V_{SABCD}}}} = \frac{{\frac{1}{3}.{S_{IBCH}}.h}}{{\frac{1}{3}.{S_{ABCD}}.h}} = \frac{{{S_{IBCH}}}}{{{S_{ABCD}}}} = \frac{{IB.BC}}{{AB.BC}} = \frac{{BI}}{{AB}} = \frac{1}{2} =  > {V_{SIBCH}} = \frac{1}{2}{V_{SABCD}} = \frac{1}{2}.\frac{{{a^3}\sqrt 2 }}{6} = \frac{{{a^3}\sqrt 2 }}{{12}}\)

close