Lý thuyết Tích phân Toán 12 Chân trời sáng tạo

1. Diện tích hình thang cong

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

1. Diện tích hình thang cong

Nếu hàm số f(x) liên tục và không âm trên đoạn \(\left[ {a;b} \right]\), thì diện tích S của hình thang cong giới hạn bởi đồ thị y = f(x), trục hoành và hai đường thẳng x = a, x = b là S = F(b) – F(a), trong đó F(x) là một nguyên hàm của hàm số f(x) trên \(\left[ {a;b} \right]\).

2. Khái niệm tích phân 

Cho hàm số f(x) liên tục trên đoạn \(\left[ {a;b} \right]\). Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn \(\left[ {a;b} \right]\) thì hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)dx} \).

Chú ý:

a) Trong trường hợp a = b hoặc a > b, ta quy ước

\(\)\(\int\limits_a^a {f(x)dx = 0} \) và \(\int\limits_a^b {f(x)dx}  =  - \int\limits_b^a {f(x)dx} \)

b) Người ta chứng minh được, tích phân chỉ phụ thuộc vào hàm số f và các cận a, b mà không phụ thuộc vào biến số x hay t, nghĩa là \(\int\limits_a^b {f(x)dx = \int\limits_a^b {f(t)dt} } \)

c) Ý nghĩa hình học của tích phân: Nếu hàm số f(x) liên tục và không âm trên đoạn \(\left[ {a;b} \right]\), thì tích phân \(\int\limits_a^b {f(x)dx} \) là diện tích S của hình thang cong giới hạn bởi đồ thị y = f(x), trục hoành và hai đường thẳng x = a, x = b

3. Tính chất của tích phân

+ \(\int\limits_a^b {kf(x)dx = k\int\limits_a^b {f(x)dx} } \) (k là hằng số)

+ \(\int\limits_a^b {\left[ {f(x) + g(x)} \right]} dx = \int\limits_a^b {f(x)dx + \int\limits_a^b {g(x)dx} } \)

+ \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]} dx = \int\limits_a^b {f(x)dx - \int\limits_a^b {g(x)dx} } \)

+ \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + \int\limits_c^b {f(x)dx} } } \) (a < c < b)

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close