1. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto
Trong không gian Oxyz, cho hai vecto \(\overrightarrow a = (x;y;z)\). và \(\overrightarrow b = (x';y';z')\). Ta có:
· \(\overrightarrow a + \overrightarrow b = (x + x';y + y';z + z')\)
· \(\overrightarrow a - \overrightarrow b = (x - x';y - y';z - z')\)
\(k\overrightarrow a = (kx;ky;kz)\) với k là một số thực
|
2. Tọa độ trung điểm đoạn thẳng. Tọa độ trọng tâm tam giác
Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A({x_A};{y_A};{z_A}),B({x_B};{y_B};{z_B}),C({x_C};{y_C};{z_C})\). Khi đó:
· Tọa độ trung điểm của đoạn thẳng AB là \(\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\)
Tọa độ trọng tâm tam giác ABC là \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{2};\frac{{{y_A} + {y_B} + {y_C}}}{2};\frac{{{z_A} + {z_B} + {z_C}}}{2}} \right)\)
|
3. Biểu thức tọa độ của tích vô hướng
Trong không gian Oxyz, tích vô hướng của hai vecto \(\overrightarrow a = (x;y;z)\) và \(\overrightarrow b = (x';y';z')\) được xác định bởi công thức \(\overrightarrow a \cdot \overrightarrow b = xx' + yy' + zz'\)
|
4. Cách tìm tọa độ của một vecto vuông góc với hai vecto cho trước
Cho hai vecto \(\overrightarrow a = (x;y;z)\) và \(\overrightarrow b = (x';y';z')\) không cùng phương.
Khi đó, vecto \(\overrightarrow w = (yz' - y'z;zx' - z'x;xy' - x'y)\) vuông góc với cả hai vecto \(\overrightarrow a \) và \(\overrightarrow b \)
|