1. Vecto pháp tuyến, cặp vecto chỉ phương của mặt phẳng a) Vecto pháp tuyến
Xem chi tiếtTrong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(1;-1;2) và có vecto pháp tuyến là (overrightarrow n = (1;2;3)) Giả sử M(x;y;z) là một điểm tùy ý thuộc mặt phẳng (P) (Hình 7) a) Tính tích vô hướng (overrightarrow n .overrightarrow {AM} ) theo x, y, z b) Tọa độ (x;y;z) của điểm M có thỏa mãn phương trình: x + 2y + 3z – 5 = 0 hay không?
Xem chi tiếtLập phương trình tổng quát của mặt phẳng biết một số điều kiện
Xem chi tiếtCho mặt phẳng (P) có phương trình tổng quát là Ax + By + Cz + D = 0 với \(\overrightarrow n = (A;B;C)\) là vecto pháp tuyến. Cho điểm \({M_0}(2;3;4)\). Gọi \(H({x_H};{y_H};{z_H})\) là hình chiếu vuông góc của điểm \({M_0}\) trên mặt phẳng (P) (Hình 16) a) Tính tọa độ của \(\overrightarrow {H{M_0}} \) theo \({x_H},{y_H},{z_H}\) b) Nêu nhận xét về phương của hai vecto \(\overrightarrow n = (A;B;C)\), \(\overrightarrow {H{M_0}} \). Từ đó, hãy suy ra rằng \(\left| {\overrightarrow n .\overrighta
Xem chi tiếtPhương trình nào sau đây là phương trình tổng quát của mặt phẳng? A. ( - {x^2} + 2y + 3z + 4 = 0) B. (2x - {y^2} + z + 5 = 0) C. (x + y - {z^2} + 6 = 0) D. (3x - 4y - 5z + 1 = 0)
Xem chi tiếtMặt phẳng \(x + 2y - 3z + 4 = 0\) có một vecto pháp tuyến là: A. \(\overrightarrow {{n_1}} = (2; - 3;4)\) B. \(\overrightarrow {{n_2}} = (1;2;3)\) C. \(\overrightarrow {{n_3}} = (1;2; - 3)\) D. \(\overrightarrow {{n_4}} = (1;2;4)\)
Xem chi tiếtLập phương trình mặt phẳng (P) đi qua điểm I(3;-4;5) và nhận \(\overrightarrow n \) làm vecto pháp tuyến
Xem chi tiếtLập phương trình mặt phẳng (P) đi qua điểm K(-1;2;3) và nhận hai vecto \(\overrightarrow u = (1;2;3),\overrightarrow v = (4;5;6)\) làm cặp vecto chỉ phương
Xem chi tiết