Giải bài tập 1 trang 80 SGK Toán 12 tập 1 - Cánh diều

Trong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (2;3 - 2)) và (overrightarrow b = (3;1; - 1)). Tọa độ của vecto (overrightarrow a - overrightarrow b ) là:

Quảng cáo

Đề bài

Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a  = (2;3 - 2)\) và \(\overrightarrow b  = (3;1; - 1)\). Tọa độ của vecto \(\overrightarrow a  - \overrightarrow b \) là:

A. (1;-2;1)

B. (5;4;-3)

C. (-1;2;-1)

D. (-1;2;-3)

Phương pháp giải - Xem chi tiết

Cho hai vectơ \(\overrightarrow a  = ({a_1};{a_2};{a_3})\), \(\overrightarrow b  = ({b_1};{b_2};{b_3})\), ta có \(\overrightarrow a  - \overrightarrow b  = ({a_1} - {b_1};{a_2} - {b_2};{a_3} - {b_3})\)

Lời giải chi tiết

\(\overrightarrow a  - \overrightarrow b  = (2 - 3;3 - 1; - 2 - ( - 1)) = ( - 1;2; - 1)\)

Chọn C

  • Giải bài tập 2 trang 80 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (0;1;1)) và (overrightarrow b = ( - 1;1;0)). Góc giữa hai vecto (overrightarrow a ) và (overrightarrow b ) bằng: A. (60^circ ) B. (120^circ ) C. (150^circ ) D. (30^circ )

  • Giải bài tập 3 trang 80 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = ( - 1;2;3)\), \(\overrightarrow b = (3;1; - 2)\) và \(\overrightarrow c = (4;2; - 3)\) a) Tìm tọa độ của vecto \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b - 3\overrightarrow c \) b) Tìm tọa độ của vecto \(\overrightarrow v \) sao cho \(\overrightarrow v + 2\overrightarrow b = \overrightarrow a + \overrightarrow c \)

  • Giải bài tập 4 trang 80 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (2; - 2;1)), (overrightarrow b = (2;1;3)). Hãy chỉ ra tọa độ của một vecto (overrightarrow c ) khác (overrightarrow 0 ) vuông góc với cả hai vecto (overrightarrow a ) và (overrightarrow b )

  • Giải bài tập 5 trang 81 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = (3;2; - 1)\), \(\overrightarrow b = ( - 2;1;2)\). Tính cosin của góc \((\overrightarrow a ,\overrightarrow b )\)

  • Giải bài tập 6 trang 81 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho A(-2;3;0), B(4;0;5), C(0;2;-3). a) Chứng minh rằng ba điểm A, B, C không thẳng hàng b) Tính chu vi tam giác ABC c) Tìm tọa độ trọng tâm G của tam giác ABC d) Tính (cos widehat {BAC})

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close