Giải bài tập 2 trang 80 SGK Toán 12 tập 1 - Cánh diều

Trong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (0;1;1)) và (overrightarrow b = ( - 1;1;0)). Góc giữa hai vecto (overrightarrow a ) và (overrightarrow b ) bằng: A. (60^circ ) B. (120^circ ) C. (150^circ ) D. (30^circ )

Quảng cáo

Đề bài

Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a  = (0;1;1)\) và \(\overrightarrow b  = ( - 1;1;0)\). Góc giữa hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) bằng:

A. \(60^\circ \)

B. \(120^\circ \)

C. \(150^\circ \)

D. \(30^\circ \)

Phương pháp giải - Xem chi tiết

\(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a |.|\overrightarrow b |}}\)

Lời giải chi tiết

\(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a |.|\overrightarrow b |}} = \frac{{0.( - 1) + 1.1 + 1.0}}{{\sqrt {{0^2} + {1^2} + {1^2}} .\sqrt {{{( - 1)}^2} + {1^2} + {0^2}} }} = \frac{1}{2} \Rightarrow (\overrightarrow a ,\overrightarrow b ) = 60^\circ \)

Chọn A

  • Giải bài tập 3 trang 80 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = ( - 1;2;3)\), \(\overrightarrow b = (3;1; - 2)\) và \(\overrightarrow c = (4;2; - 3)\) a) Tìm tọa độ của vecto \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b - 3\overrightarrow c \) b) Tìm tọa độ của vecto \(\overrightarrow v \) sao cho \(\overrightarrow v + 2\overrightarrow b = \overrightarrow a + \overrightarrow c \)

  • Giải bài tập 4 trang 80 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (2; - 2;1)), (overrightarrow b = (2;1;3)). Hãy chỉ ra tọa độ của một vecto (overrightarrow c ) khác (overrightarrow 0 ) vuông góc với cả hai vecto (overrightarrow a ) và (overrightarrow b )

  • Giải bài tập 5 trang 81 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = (3;2; - 1)\), \(\overrightarrow b = ( - 2;1;2)\). Tính cosin của góc \((\overrightarrow a ,\overrightarrow b )\)

  • Giải bài tập 6 trang 81 SGK Toán 12 tập 1 - Cánh diều

    Trong không gian với hệ tọa độ Oxyz, cho A(-2;3;0), B(4;0;5), C(0;2;-3). a) Chứng minh rằng ba điểm A, B, C không thẳng hàng b) Tính chu vi tam giác ABC c) Tìm tọa độ trọng tâm G của tam giác ABC d) Tính (cos widehat {BAC})

  • Giải bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều

    Cho hình hộp ABCD.A’B’C’D’, biết A(1;0;1), B(2;1;2), D(1;-1;1), C’(4;5;-5). Hãy chỉ ra tọa độ của một vecto khác (overrightarrow 0 ) vuông góc với cả hai vecto trong mỗi trường hợp sau: a) (overrightarrow {AC} ) và (overrightarrow {B'D'} ) b) (overrightarrow {AC'} ) và (overrightarrow {BD} )

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close