Giải bài tập 2 trang 80 SGK Toán 12 tập 1 - Cánh diềuTrong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (0;1;1)) và (overrightarrow b = ( - 1;1;0)). Góc giữa hai vecto (overrightarrow a ) và (overrightarrow b ) bằng: A. (60^circ ) B. (120^circ ) C. (150^circ ) D. (30^circ ) Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = (0;1;1)\) và \(\overrightarrow b = ( - 1;1;0)\). Góc giữa hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) bằng: A. \(60^\circ \) B. \(120^\circ \) C. \(150^\circ \) D. \(30^\circ \) Phương pháp giải - Xem chi tiết \(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a |.|\overrightarrow b |}}\) Lời giải chi tiết \(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a |.|\overrightarrow b |}} = \frac{{0.( - 1) + 1.1 + 1.0}}{{\sqrt {{0^2} + {1^2} + {1^2}} .\sqrt {{{( - 1)}^2} + {1^2} + {0^2}} }} = \frac{1}{2} \Rightarrow (\overrightarrow a ,\overrightarrow b ) = 60^\circ \) Chọn A
Quảng cáo
|