1. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto
Xem chi tiếtBiểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto
Xem chi tiếtCách tìm tọa độ của một vecto vuông góc với hai vecto cho trước
Xem chi tiếtTrong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (2;3 - 2)) và (overrightarrow b = (3;1; - 1)). Tọa độ của vecto (overrightarrow a - overrightarrow b ) là:
Xem chi tiếtTrong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (0;1;1)) và (overrightarrow b = ( - 1;1;0)). Góc giữa hai vecto (overrightarrow a ) và (overrightarrow b ) bằng: A. (60^circ ) B. (120^circ ) C. (150^circ ) D. (30^circ )
Xem chi tiếtTrong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = ( - 1;2;3)\), \(\overrightarrow b = (3;1; - 2)\) và \(\overrightarrow c = (4;2; - 3)\) a) Tìm tọa độ của vecto \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b - 3\overrightarrow c \) b) Tìm tọa độ của vecto \(\overrightarrow v \) sao cho \(\overrightarrow v + 2\overrightarrow b = \overrightarrow a + \overrightarrow c \)
Xem chi tiếtTrong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (2; - 2;1)), (overrightarrow b = (2;1;3)). Hãy chỉ ra tọa độ của một vecto (overrightarrow c ) khác (overrightarrow 0 ) vuông góc với cả hai vecto (overrightarrow a ) và (overrightarrow b )
Xem chi tiếtTrong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = (3;2; - 1)\), \(\overrightarrow b = ( - 2;1;2)\). Tính cosin của góc \((\overrightarrow a ,\overrightarrow b )\)
Xem chi tiết