Giải mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức

Tính chất của tích phân

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

 

 

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 16 SGK Toán 12 Kết nối tri thức

 

Tính và so sánh:

a) \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \);

b) \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} \) và \(\int\limits_0^1 {{x^2}dx}  + \int\limits_0^1 {xdx} \);

c) \(\int\limits_0^3 {xdx} \) và \(\int\limits_0^1 {xdx}  + \int\limits_1^3 {xdx} \).

 

Phương pháp giải:

Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)

 

Lời giải chi tiết:

a) Ta có: \(\int\limits_0^1 {2xdx}  = {x^2}\left| \begin{array}{l}1\\0\end{array} \right. = 1\), \(2\int\limits_0^1 {xdx}  = 2.\frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. = 1\) nên \(\int\limits_0^1 {2xdx}  = 2\int\limits_0^1 {xdx} \)

b) Ta có: \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx}  = \left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right)\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}\)

\(\int\limits_0^1 {{x^2}dx}  + \int\limits_0^1 {xdx}  = \frac{{{x^3}}}{3}\left| \begin{array}{l}1\\0\end{array} \right. + \frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{3} - 0 + \frac{1}{2} - 0 = \frac{5}{6}\)

Do đó, \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx}  = \int\limits_0^1 {{x^2}dx}  + \int\limits_0^1 {xdx} \)

c) Ta có: \(\int\limits_0^3 {xdx}  = \frac{{{x^2}}}{2}\left| \begin{array}{l}3\\0\end{array} \right. = \frac{{{3^2}}}{2} - 0 = \frac{9}{2}\); \(\int\limits_0^1 {xdx}  + \int\limits_1^3 {xdx}  = \frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. + \frac{{{x^2}}}{2}\left| \begin{array}{l}3\\1\end{array} \right. = \frac{1}{2} - 0 + \frac{{{3^2}}}{2} - \frac{1}{2} = \frac{9}{2}\)

Do đó, \(\int\limits_0^3 {xdx}  = \int\limits_0^1 {xdx}  + \int\limits_1^3 {xdx} \)

 

LT3

Trả lời câu hỏi Luyện tập 3 trang 17 SGK Toán 12 Kết nối tri thức

 

Tính các tích phân sau:

a) \(\int\limits_0^{2\pi } {\left( {2x + \cos x} \right)dx} \);

b) \(\int\limits_1^2 {\left( {{3^x} - \frac{3}{x}} \right)dx} \);

c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} \).

 

Phương pháp giải:

Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có:

+ \(\int\limits_a^b {kf\left( x \right)dx}  = k\int\limits_a^b {f\left( x \right)dx} \) (k là hằng số)

+ \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx}  = \int\limits_a^b {f\left( x \right)dx}  + \int\limits_a^b {g\left( x \right)dx} \)

+ \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx}  = \int\limits_a^b {f\left( x \right)dx}  - \int\limits_a^b {g\left( x \right)dx} \)

 

Lời giải chi tiết:

a) \(\int\limits_0^{2\pi } {\left( {2x + \cos x} \right)dx}  = 2\int\limits_0^{2\pi } {xdx}  + \int\limits_0^{2\pi } {\cos xdx}  = 2.\frac{{{x^2}}}{2}\left| \begin{array}{l}2\pi \\0\end{array} \right. + \sin x\left| \begin{array}{l}2\pi \\0\end{array} \right.\)

\( = {\left( {2\pi } \right)^2} - 0 + \sin 2\pi  - \sin 0 = 4{\pi ^2}\)

b) \(\int\limits_1^2 {\left( {{3^x} - \frac{3}{x}} \right)dx}  = \int\limits_1^2 {{3^x}dx}  - 3\int\limits_1^2 {\frac{1}{x}dx}  = \frac{{{3^x}}}{{\ln 3}}\left| \begin{array}{l}2\\1\end{array} \right. - 3\ln \left| x \right|\left| \begin{array}{l}2\\1\end{array} \right. = \frac{1}{{\ln 3}}\left( {{3^2} - {3^1}} \right) - 3\ln 2 + 3\ln 1\)

\( = \frac{6}{{\ln 3}} - 3\ln 2\)

c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx}  = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\cos }^2}x}}dx}  - \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\sin }^2}x}}dx = \tan x\left| \begin{array}{l}\frac{\pi }{3}\\\frac{\pi }{6}\end{array} \right. + \cot x\left| \begin{array}{l}\frac{\pi }{3}\\\frac{\pi }{6}\end{array} \right.} \)

\( = \tan \frac{\pi }{3} - \tan \frac{\pi }{6} + \cot \frac{\pi }{3} - \cot \frac{\pi }{6} = \sqrt 3  - \frac{{\sqrt 3 }}{3} + \frac{{\sqrt 3 }}{3} - \sqrt 3  = 0\)

 

LT4

Trả lời câu hỏi Luyện tập 4 trang 17 SGK Toán 12 Kết nối tri thức

 

Tính \(\int\limits_0^3 {\left| {2x - 3} \right|dx} \).

 

Phương pháp giải:

Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có: \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^c {f\left( x \right)dx}  + \int\limits_c^b {f\left( x \right)dx} \) \(\left( {a < c < b} \right)\).

 

Lời giải chi tiết:

\(\int\limits_0^3 {\left| {2x - 3} \right|dx}  = \int\limits_0^{\frac{3}{2}} {\left| {2x - 3} \right|dx}  + \int\limits_{\frac{3}{2}}^3 {\left| {2x - 3} \right|dx}  = \int\limits_0^{\frac{3}{2}} {\left( {3 - 2x} \right)dx}  + \int\limits_{\frac{3}{2}}^3 {\left( {2x - 3} \right)dx} \)

\( = \left( {3x - {x^2}} \right)\left| \begin{array}{l}\frac{3}{2}\\0\end{array} \right. + \left( {{x^2} - 3x} \right)\left| \begin{array}{l}3\\\frac{3}{2}\end{array} \right. = \left[ {\left( {\frac{9}{2} - \frac{9}{4}} \right) - 0} \right] + \left[ {\left( {{3^2} - 3.3} \right) - \left( {\frac{9}{4} - \frac{9}{2}} \right)} \right] = \frac{9}{2}\)

 

VD2

Trả lời câu hỏi Vận dụng 2 trang 17 SGK Toán 12 Kết nối tri thức

 

Giá trị trung bình của hàm số liên tục f(x) trên đoạn [a; b] được định nghĩa là \(\frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \). Giả sử nhiệt độ (tính bằng \(^oC\)) tại thời điểm t giờ trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa ở một địa phương vào một ngày nào đó được mô hình hóa bởi hàm số \(T\left( t \right) = 20 + 1,5\left( {t - 6} \right),6 \le t \le 12\). Tìm nhiệt độ trung bình vào ngày đó trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa.

 

Phương pháp giải:

Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)

 

Lời giải chi tiết:

Nhiệt độ trung bình vào ngày đó từ khoảng thời gian 6 giờ sáng đến 12 giờ trưa là:

\(\frac{1}{{12 - 6}}\int\limits_6^{12} {\left[ {20 + 1,5\left( {t - 6} \right)} \right]dt}  = \frac{1}{6}\int\limits_6^{12} {\left( {11 + 1,5t} \right)dt = \frac{1}{6}\left( {11t + \frac{3}{4}{t^2}} \right)\left| \begin{array}{l}12\\6\end{array} \right.} \)

\( = \frac{1}{6}\left[ {\left( {11.12 + \frac{3}{4}{{.12}^2}} \right) - \left( {11.6 + \frac{3}{4}{{.6}^2}} \right)} \right] = 24,{5^0}C\)

Vậy nhiệt độ trung bình vào ngày đó trong trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa là \(24,{5^0}C\).

 

  • Giải bài tập 4.8 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Sử dụng ý nghĩa hình học của tích phân, tính: a) \(\int\limits_1^2 {\left( {2x + 1} \right)dx} \); b) \(\int\limits_{ - 3}^3 {\sqrt {9 - {x^2}} dx} \).

  • Giải bài tập 4.9 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho \(\int\limits_0^3 {f\left( x \right)dx = 5} \) và \(\int\limits_0^3 {g\left( x \right)dx = 2} \). Tính: a) \(\int\limits_0^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \); b) \(\int\limits_0^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \); c) \(\int\limits_0^3 {3f\left( x \right)dx} \); d) \(\int\limits_0^3 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).

  • Giải bài tập 4.10 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Tính: a) \(\int\limits_0^3 {{{\left( {3x - 1} \right)}^2}dx} \); b) \(\int\limits_0^{\frac{\pi }{2}} {\left( {1 + \sin x} \right)dx} \); c) \(\int\limits_0^1 {\left( {{e^{2x}} + 3{x^2}} \right)dx} \); d) \(\int\limits_{ - 1}^2 {\left| {2x + 1} \right|dx} \).

  • Giải bài tập 4.11 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là \(v\left( t \right) = {t^2} - t - 6\) (m/s). a) Tìm độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\), tức là tính \(\int\limits_1^4 {v\left( t \right)dt} \). b) Tìm tổng quãng đường vật đi được trong khoảng thời gian này, tức là tính \(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt} \).

  • Giải bài tập 4.12 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Giả sử lợi nhuận biên (tính bằng triệu đồng) của một sản phẩm được mô hình hóa bằng công thức \(P'\left( x \right) = - 0,0005x + 12,2\). Ở đây P(x) là lợi nhuận (tính bằng triệu đồng) khi bán được x đơn vị sản phẩm. a) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 đơn vị sản phẩm. b) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 đơn vị sản phẩm.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close