Giải bài tập 4.11 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là \(v\left( t \right) = {t^2} - t - 6\) (m/s). a) Tìm độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\), tức là tính \(\int\limits_1^4 {v\left( t \right)dt} \). b) Tìm tổng quãng đường vật đi được trong khoảng thời gian này, tức là tính \(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt} \).

Quảng cáo

Đề bài

 

 

Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là \(v\left( t \right) = {t^2} - t - 6\) (m/s).

a) Tìm độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\), tức là tính \(\int\limits_1^4 {v\left( t \right)dt} \).

b) Tìm tổng quãng đường vật đi được trong khoảng thời gian này, tức là tính \(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt} \). 

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)

Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có: \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^c {f\left( x \right)dx}  + \int\limits_c^b {f\left( x \right)dx} \) \(\left( {a < c < b} \right)\)

 

Lời giải chi tiết

a) Độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\) là:

\(\int\limits_1^4 {v\left( t \right)dt}  = \int\limits_1^4 {\left( {{t^2} - t - 6} \right)dt}  = \left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)\left| \begin{array}{l}4\\1\end{array} \right. = \left( {\frac{{{4^3}}}{3} - \frac{{{4^2}}}{2} - 6.4} \right) - \left( {\frac{{{1^3}}}{3} - \frac{{{1^2}}}{2} - 6.1} \right) = \frac{{ - 9}}{2}\)

Vậy vật dịch chuyển \(\frac{9}{2}m\) trong khoảng thời gian \(1 \le t \le 4\).

b) Tổng quãng đường vật đi được trong khoảng thời gian này là:

\(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt}  = \int\limits_1^4 {\left| {{t^2} - t - 6} \right|dt}  = \int\limits_1^3 {\left| {{t^2} - t - 6} \right|dt}  + \int\limits_3^4 {\left| {{t^2} - t - 6} \right|dt}  =  - \int\limits_1^3 {\left( {{t^2} - t - 6} \right)dt}  + \int\limits_3^4 {\left( {{t^2} - t - 6} \right)dt} \)

\( =  - \left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)\left| \begin{array}{l}3\\1\end{array} \right. + \left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)\left| \begin{array}{l}4\\3\end{array} \right.\)

\( =  - \left[ {\left( {\frac{{{3^3}}}{3} - \frac{{{3^2}}}{2} - 6.3} \right) - \left( {\frac{{{1^3}}}{3} - \frac{{{1^2}}}{2} - 6.1} \right)} \right] + \left[ {\left( {\frac{{{4^3}}}{3} - \frac{{{4^2}}}{2} - 6.4} \right) - \left( {\frac{{{3^3}}}{3} - \frac{{{3^2}}}{2} - 6.3} \right)} \right] = \frac{{22}}{3} + \frac{{17}}{6} = \frac{{61}}{6}\)

 

  • Giải bài tập 4.12 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Giả sử lợi nhuận biên (tính bằng triệu đồng) của một sản phẩm được mô hình hóa bằng công thức \(P'\left( x \right) = - 0,0005x + 12,2\). Ở đây P(x) là lợi nhuận (tính bằng triệu đồng) khi bán được x đơn vị sản phẩm. a) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 đơn vị sản phẩm. b) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 đơn vị sản phẩm.

  • Giải bài tập 4.13 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức \(v = k\left( {{R^2} - {r^2}} \right)\), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng \(0 \le r \le R\). So sánh vận tốc trung bình với vận tốc lớn nhất.

  • Giải bài tập 4.10 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Tính: a) \(\int\limits_0^3 {{{\left( {3x - 1} \right)}^2}dx} \); b) \(\int\limits_0^{\frac{\pi }{2}} {\left( {1 + \sin x} \right)dx} \); c) \(\int\limits_0^1 {\left( {{e^{2x}} + 3{x^2}} \right)dx} \); d) \(\int\limits_{ - 1}^2 {\left| {2x + 1} \right|dx} \).

  • Giải bài tập 4.9 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho \(\int\limits_0^3 {f\left( x \right)dx = 5} \) và \(\int\limits_0^3 {g\left( x \right)dx = 2} \). Tính: a) \(\int\limits_0^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \); b) \(\int\limits_0^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \); c) \(\int\limits_0^3 {3f\left( x \right)dx} \); d) \(\int\limits_0^3 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).

  • Giải bài tập 4.8 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức

    Sử dụng ý nghĩa hình học của tích phân, tính: a) \(\int\limits_1^2 {\left( {2x + 1} \right)dx} \); b) \(\int\limits_{ - 3}^3 {\sqrt {9 - {x^2}} dx} \).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close