Giải bài tập 8 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo

Cho hai điểm A(–1; 2; 3), B = (1; 0; 2). Toạ độ điểm M thoả mãn \(\overrightarrow {AB} = 2\overrightarrow {MA} \) là A. \(M( - 2;3;\frac{7}{2})\) B. \(M( - 2; - 3;\frac{7}{2})\) C. \(M( - 2;3;7)\). D. \(M( - 4;6;7)\).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

 

 

Cho hai điểm A(–1; 2; 3), B = (1; 0; 2). Toạ độ điểm M thoả mãn \(\overrightarrow {AB}  = 2\overrightarrow {MA} \) là

A. \(M( - 2;3;\frac{7}{2})\)

B. \(M( - 2; - 3;\frac{7}{2})\)

C. \(M( - 2;3;7)\).

D. \(M( - 4;6;7)\).

 

Phương pháp giải - Xem chi tiết

Cho hai vectơ \(\overrightarrow a  = ({a_1};{a_2};{a_3})\), \(\overrightarrow b  = ({b_1};{b_2};{b_3})\), ta có \(\overrightarrow a  = k\overrightarrow b  \Leftrightarrow \left\{ \begin{array}{l}{a_1} = k{b_1}\\{a_2} = k{b_2}\\{a_2} = k{b_2}\end{array} \right.\)

 

Lời giải chi tiết

Chọn A

Gọi \(M(x;y;z)\)

Ta có: \(\overrightarrow {AB}  = (2; - 2; - 1)\), \(\overrightarrow {MA}  = ( - 1 - x;2 - y;3 - z)\)

\(\overrightarrow {AB}  = 2\overrightarrow {MA}  \Leftrightarrow \left\{ \begin{array}{l}2 = 2( - 1 - x)\\ - 2 = 2(2 - y)\\ - 1 = 2(3 - z)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 2\\y = 3\\z = \frac{7}{2}\end{array} \right. \Rightarrow D( - 2;3;\frac{7}{2})\)

 

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close