Giải bài tập 4.20 trang 27 SGK Toán 12 tập 2 - Kết nối tri thứcMột nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là A. \(F\left( x \right) = 2\cos 2x\). B. \(F\left( x \right) = - \cos 2x\). C. \(F\left( x \right) = \frac{1}{2}\cos 2x\). D. \(F\left( x \right) = \frac{{ - 1}}{2}\cos 2x\). Quảng cáo
Đề bài
Một nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là A. \(F\left( x \right) = 2\cos 2x\). B. \(F\left( x \right) = - \cos 2x\). C. \(F\left( x \right) = \frac{1}{2}\cos 2x\). D. \(F\left( x \right) = \frac{{ - 1}}{2}\cos 2x\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để tìm nguyên hàm của f(x) để tính: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K. Lời giải chi tiết Vì \(\left( {\frac{{ - 1}}{2}\cos 2x} \right)' = \sin 2x\) nên hàm số \(F\left( x \right) = \frac{{ - 1}}{2}\cos 2x\) là một nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\). Chọn D
Quảng cáo
|