Giải bài tập 27 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức

Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 2;3} \right),B\left( {3;0; - 1} \right)\). a) Viết phương trình mặt phẳng (OAB). b) Tìm tọa độ trung điểm I của đoạn thẳng AB. c) Tìm điểm M thuộc mặt phẳng (Oxy) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) nhỏ nhất.

Quảng cáo

Đề bài

 

 

Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 2;3} \right),B\left( {3;0; - 1} \right)\).

a) Viết phương trình mặt phẳng (OAB).

b) Tìm tọa độ trung điểm I của đoạn thẳng AB.

c) Tìm điểm M thuộc mặt phẳng (Oxy) sao cho \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất.

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:

+ Tìm vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến\(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

Sử dụng kiến thức về tọa độ trung điểm của đoạn thẳng để tính: Nếu I là trung điểm của AB thì  \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2}\\{z_I} = \frac{{{z_A} + {z_B}}}{2}\end{array} \right.\)

 

Lời giải chi tiết

a) Ta có: \(\overrightarrow {OA} \left( {1; - 2;3} \right),\overrightarrow {OB} \left( {3;0; - 1} \right)\)

\(\left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&3\\0&{ - 1}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}3&1\\{ - 1}&3\end{array}} \right|,\left| {\begin{array}{*{20}{c}}1&{ - 2}\\3&0\end{array}} \right|} \right) = \left( {2;10;6} \right)\)

Mặt phẳng (AOB) có hai vectơ chỉ phương là \(\overrightarrow {OA} ,\overrightarrow {OB} \) nên mặt phẳng (OAB) nhận \(\frac{1}{2}\left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {1;5;3} \right)\) làm một vectơ pháp tuyến.

Vậy phương trình mặt phẳng (OAB) là: \(x + 5y + 3z = 0\).

b) Vì I là trung điểm của AB nên: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{1 + 3}}{2} = 2\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{ - 2 + 0}}{2} =  - 1\\{z_I} = \frac{{{z_A} + {z_B}}}{2} = \frac{{3 - 1}}{2} = 1\end{array} \right.\). Vậy \(I\left( {2; - 1;1} \right)\)

c) Vì I là trung điểm của AB nên \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \).

Do đó, \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right| = 2\left| {\overrightarrow {MI} } \right| = 2MI\)

Để \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất khi và chỉ khi MI nhỏ nhất.

Mà M thuộc mặt phẳng (Oxy) nên MI nhỏ nhất khi \(MI \bot \left( {Oxy} \right)\). Hay M là hình chiếu vuông góc của I trên mặt phẳng (Oxy). Do đó, \(M\left( {2; - 1;0} \right)\).

 

  • Giải bài tập 29 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức

    Thu nhập của người lao động trong một công ty được cho trong bảng sau: Tính khoảng tứ phân vị cho số liệu này.

  • Giải bài tập 28 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, có một nguồn sáng phát ra từ điểm S(2; 3; 5) và một đoạn dây thẳng nối từ điểm A(1; 2; 1) đến điểm B(3; 1; 2). Dưới nguồn sáng, đoạn dây trên có bóng trên mặt phẳng (Oxy) là một đoạn thẳng. Tính độ dài đoạn thẳng đó.

  • Giải bài tập 30 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức

    Có hai chuồng gà. Chuồng I có 8 con gà trống và 13 con gà mái. Chuồng II có 10 con gà trống và 6 con gà mái. An bắt ngẫu nhiên một con gà từ chuồng II đem thả vào chuồng I. Sau đó, Bình bắt ngẫu nhiên một con gà từ chuồng I. Giả sử Bình bắt được con gà mái. Tính xác suất để Bình bắt được con gà mái ở chuồng I.

  • Giải bài tập 31 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong một tuần, Sơn chọn ngẫu nhiên ba ngày chạy bộ buổi sáng. Nếu chạy bộ thì xác suất Sơn ăn thêm 1 quả trứng vào bữa sáng hôm đó là 0,7. Nếu không chạy bộ thì xác suất Sơn ăn thêm một quả trứng vào bữa sáng hôm đó là 0,25. Chọn ngẫu nhiên một ngày trong tuần của Sơn. Tính xác suất để hôm đó Sơn chạy bộ nếu biết rằng sáng hôm đó Sơn có ăn thêm một quả trứng.

  • Giải bài tập 26 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, cho điểm \(A\left( { - 1;1;2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + t\\y = 3 - 2t\\z = - 1 + 2t\end{array} \right.\). a) Viết phương trình đường thẳng d’ đi qua A và song song với đường thẳng d. b) Viết phương trình mặt phẳng (P) chứa điểm A và đường thẳng d.

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close