Giải bài tập 2 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo

Viết phương trình chính tắc của đường thẳng \(b\) trong mỗi trường hợp sau: a) Đường thẳng \(b\) đi qua điểm \(M\left( {1; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {5; - 3;2} \right)\). b) Đường thẳng \(b\) đi qua hai điểm \(A\left( {4;7;1} \right)\) và \(B\left( {6;1;5} \right)\).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Viết phương trình chính tắc của đường thẳng \(b\) trong mỗi trường hợp sau:

a) Đường thẳng \(b\) đi qua điểm \(M\left( {1; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {5; - 3;2} \right)\).

b) Đường thẳng \(b\) đi qua hai điểm \(A\left( {4;7;1} \right)\) và \(B\left( {6;1;5} \right)\).

Phương pháp giải - Xem chi tiết

a) Phương trình chính tắc của đường thẳng \(b\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\vec a = \left( {{a_1};{a_2};{a_3}} \right)\) là \(\frac{{x - {x_0}}}{{{a_1}}} = \frac{{y - {y_0}}}{{{a_2}}} = \frac{{z - {z_0}}}{{{a_3}}}\).

b) Đường thẳng \(b\) đi qua hai điểm \(A\) và \(B\) nên sẽ nhận \(\overrightarrow {AB} \) là một vectơ chỉ phương. Từ đó viết phương trình đường thẳng \(b\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow {AB} \).

Lời giải chi tiết

a) Phương trình chính tắc của đường thẳng \(b\) đi qua điểm \(M\left( {1; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {5; - 3;2} \right)\) là \(\frac{{x - 1}}{5} = \frac{{y + 2}}{{ - 3}} = \frac{{z + 3}}{2}\).

b) Đường thẳng \(b\) đi qua hai điểm \(A\left( {4;7;1} \right)\) và \(B\left( {6;1;5} \right)\) nên sẽ nhận \(\overrightarrow {AB}  = \left( {2; - 6; - 4} \right)\) làm một vectơ chỉ phương. Ta cũng có vectơ \(\vec b = \frac{1}{2}\overrightarrow {AB}  = \left( {1; - 3; - 2} \right)\) cũng là một vectơ chỉ phương của đường thẳng \(b\).

Suy ra phương trình chính tắc của đường thẳng \(b\) là \(\frac{{x - 4}}{1} = \frac{{y - 7}}{{ - 3}} = \frac{{z - 1}}{{ - 2}}\).

  • Giải bài tập 3 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho đường thẳng \(d\) có phương trình chính tắc \(\frac{{x - 3}}{1} = \frac{{y + 3}}{3} = \frac{{z - 2}}{7}\). a) Tìm một vectơ chỉ phương của \(d\) và một điểm trên \(d\). b) Viết phương trình tham số của \(d\).

  • Giải bài tập 4 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trong trò chơi mô phỏng bắn súng 3D trong không gian (Oxyz), một xạ thủ đang ngắm với toạ độ khe ngắm và đầu ruồi lần lượt là (Mleft( {3;3;1,5} right)), (Nleft( {3;4;1,5} right)). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng (MN)).

  • Giải bài tập 5 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Xét vị trí tương đối giữa các cặp đường thẳng sau: a) \(d:\left\{ \begin{array}{l}x = 1 + t\\y = - 1 + 2t\\z = - 2 + t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 2 + 2t'\\y = 3 + 4t'\\z = 2t'\end{array} \right.\) b) \(d:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{2}\) và \(d':\frac{{x - 2}}{1} = \frac{{y - 1}}{5} = \frac{{z - 1}}{1}\).

  • Giải bài tập 6 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Viết phương trình tham số của đường thẳng \(d\) đi qua điểm \(A\left( {1;0;1} \right)\) và song song với đường thẳng \(d':\frac{{x + 1}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{4}\).

  • Giải bài tập 7 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trên phần mềm mô phỏng 3D một máy khoan trong không gian \(Oxyz\), cho biết phương trình trục \(a\) của mũi khoan và một đường rãnh \(b\) trên vật cần khoan (hình dưới đây) lần lượt là \(a:\left\{ \begin{array}{l}x = 1\\y = 2\\z = 3t\end{array} \right.\) và \(b:\left\{ \begin{array}{l}x = 1 + 4t'\\y = 2 + 2t'\\z = 6\end{array} \right.\). a) Chứng minh \(a\), \(b\) vuông góc và cắt nhau. b) Tìm toạ độ giao điểm của \(a\) và \(b\).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close