Giải bài tập 2 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Tính các tích phân sau: a) \(\int\limits_1^2 {{x^4}dx} \) b) \(\int\limits_1^2 {\frac{1}{{\sqrt x }}dx} \) c) \(\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx} \) d) \(\int\limits_0^2 {{3^x}dx} \)

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Tính các tích phân sau:

a) \(\int\limits_1^2 {{x^4}dx} \)

b) \(\int\limits_1^2 {\frac{1}{{\sqrt x }}dx} \)

c) \(\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx} \)

d) \(\int\limits_0^2 {{3^x}dx} \)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính tích phân \(\int\limits_a^b {f\left( x \right)dx}  = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

Lời giải chi tiết

a) \(\int\limits_1^2 {{x^4}dx}  = \left. {\left( {\frac{{{x^5}}}{5}} \right)} \right|_1^2 = \frac{{{2^5}}}{5} - \frac{{{1^5}}}{5} = \frac{{31}}{5}\)

b) \(\int\limits_1^2 {\frac{1}{{\sqrt x }}dx}  = \int\limits_1^2 {{x^{ - \frac{1}{2}}}dx}  = \left. {\left( {\frac{{{x^{\frac{1}{2}}}}}{{\frac{1}{2}}}} \right)} \right|_1^2 = \frac{{{2^{\frac{1}{2}}}}}{{\frac{1}{2}}} - \frac{{{1^{\frac{1}{2}}}}}{{\frac{1}{2}}} = 2\left( {\sqrt 2  - 1} \right)\)

c) \(\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx}  = \left. {\left( {\tan x} \right)} \right|_0^{\frac{\pi }{4}} = \tan \frac{\pi }{4} - \tan 0 = 1\)

d) \(\int\limits_0^2 {{3^x}dx}  = \left. {\left( {\frac{{{3^x}}}{{\ln 3}}} \right)} \right|_0^2 = \frac{{{3^2}}}{{\ln 3}} - \frac{{{3^0}}}{{\ln 3}} = \frac{8}{{\ln 3}}\)

  • Giải bài tập 3 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Tính các tích phân sau: a) \(\int\limits_{ - 2}^4 {\left( {x + 1} \right)\left( {x - 1} \right)dx} \) b) \(\int\limits_1^2 {\frac{{{x^2} - 2x + 1}}{x}dx} \) c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\sin x - 2} \right)dx} \) d) \(\int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^2}x}}{{1 + \cos x}}dx} \)

  • Giải bài tập 4 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Tính các tích phân sau: a) \(\int\limits_{ - 2}^1 {\left| {2x + 2} \right|dx} \) b) \(\int\limits_0^4 {\left| {{x^2} - 4} \right|dx} \) c) \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} \)

  • Giải bài tập 5 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Mặt cắt ngang của một ống dẫn khí nóng là một hình vành khuyên như hình dưới đây. Khí bên trong ống được duy trì ở \({150^o}{\rm{C}}\). Biết rằng nhiệt độ \(T\left( {^oC} \right)\) tại điểm A trên thành ống là hàm số của khoảng cách \(x{\rm{ }}\left( {{\rm{cm}}} \right)\) từ A đến tâm của mặt cắt và \(T'\left( x \right) = - \frac{{30}}{x}\) \(\left( {6 \le x \le 8} \right)\). Tìm nhiệt độ mặt ngoài của ống.

  • Giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Tốc độ \(v{\rm{ }}\left( {{\rm{m/s}}} \right)\) của một thang máy di chuyển từ tầng 1 lên tầng cao nhất theo thời gian \(t\) (giây) được cho bởi công thức \(v\left( t \right) = \left\{ {\begin{array}{*{20}{c}}t&{\left( {0 \le t \le 2} \right)}\\2&{\left( {2 < t \le 20} \right)}\\{12 - 0,5t}&{\left( {20 < t \le 24} \right)}\end{array}} \right.\). Tính quãng đường chuyển động và tốc độ trung bình của thang máy.

  • Giải bài tập 1 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Tính diện tích hình thang cong giới hạn bởi: a) Đồ thị hàm số (y = {x^2}), trục hoành và hai đường thẳng (x = 0), (x = 2). b) Đồ thị hàm số (y = frac{1}{x}), trục hoành và hai đường thẳng (x = 1), (x = 3).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close