Giải bài tập 15 trang 58 SGK Toán 9 tập 1 - Chân trời sáng tạoTính (frac{{sqrt 3 + sqrt 2 }}{{sqrt 3 - sqrt 2 }} - frac{{sqrt 3 - sqrt 2 }}{{sqrt 3 + sqrt 2 }}). Quảng cáo
Đề bài Tính \(\frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} - \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Quy đồng mẫu thức rồi tính. Lời giải chi tiết \(\frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} - \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }} = \frac{{{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - {{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\) \( = \frac{{\left( {\sqrt 3 + \sqrt 2 + \sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 - \sqrt 3 + \sqrt 2 } \right)}}{{3 - 2}}\) \(\begin{array}{l} = 2\sqrt 3 .2\sqrt 2 \\ = 4\sqrt 6 \end{array}\)
Quảng cáo
|