Giải bài 82 trang 108 SBT toán 10 - Cánh diềuCho tam giác ABC và đường thẳng d không có điểm chung với bất kì cạnh nào của tam giác. M là điểm thay đổi trên đường thẳng d. Xác định vị trí của M sao cho biểu thức \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Quảng cáo
Đề bài Cho tam giác ABC và đường thẳng d không có điểm chung với bất kì cạnh nào của tam giác. M là điểm thay đổi trên đường thẳng d. Xác định vị trí của M sao cho biểu thức \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Phương pháp giải - Xem chi tiết Bước 1: Tìm điểm P sao cho \(\overrightarrow {PA} + \overrightarrow {PB} + \overrightarrow {PC} = \overrightarrow 0 \) Bước 2: Tách vectơ sao cho xuất hiện \(\overrightarrow {MP} \) Bước 3: Tìm giá trị nhỏ nhất của biểu thức rút gọn ở bước 2 và kết luận Lời giải chi tiết Lời giải chi tiết Gọi G là trọng tâm tam giác ABC. Khi đó \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) Ta có: \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {\overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {MG} + \overrightarrow {GB} + \overrightarrow {MG} + \overrightarrow {GC} } \right|\) \( = \left| {3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)} \right| = 3\left| {\overrightarrow {MG} } \right|\)\( \ge 3HG\) (với H là hình chiếu của G trên d) Vậy với M là hình chiếu của G trên đường thẳng d thì biểu thức \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất
Quảng cáo
|