Giải bài 81 trang 108 SBT toán 10 - Cánh diềuCho tử giác ABCD. M là điểm thay đổi trong mặt phẳng thoả mãn \(\left( {\overrightarrow {MA} + \overrightarrow {MB} } \right).\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right) = 0\). Chứng minh rằng điểm M luôn nằm trên một đường tròn cố định. Quảng cáo
Đề bài Cho tử giác ABCD. M là điểm thay đổi trong mặt phẳng thoả mãn \(\left( {\overrightarrow {MA} + \overrightarrow {MB} } \right).\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right) = 0\). Chứng minh rằng điểm M luôn nằm trên một đường tròn cố định. Phương pháp giải - Xem chi tiết Sử dụng tính chất trung điểm của đoạn thẳng để tìm tập hợp các điểm M Lời giải chi tiết Theo giả thiết, \(\left( {\overrightarrow {MA} + \overrightarrow {MB} } \right).\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}\overrightarrow {MA} + \overrightarrow {MB} = 0\\\overrightarrow {MC} + \overrightarrow {MD} = 0\end{array} \right.\) Gọi P, Q lần lượt là trung điểm của AB và CD \( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MP} \\\overrightarrow {MC} + \overrightarrow {MD} = 2\overrightarrow {MQ} \end{array} \right.\) \( \Rightarrow \left( {\overrightarrow {MA} + \overrightarrow {MB} } \right).\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right) = 0 \Leftrightarrow 2\overrightarrow {MP} .2\overrightarrow {MQ} = 0 \Leftrightarrow \overrightarrow {MP} .\overrightarrow {MQ} = 0\) + Nếu M không trùng với P hoặc Q thì \(\overrightarrow {MP} .\overrightarrow {MQ} = 0 \Leftrightarrow MP \bot MQ\) \( \Rightarrow \) Tập hợp các điểm M là đường tròn đường kính PQ + Nếu M trùng với P hoặc Q thì hiển nhiên M thuộc đường tròn đường kính PQ Vậy M luôn thuộc đường tròn đường kính PQ cố định
Quảng cáo
|