Giải bài 6 trang 72 SGK Toán 8 – Chân trời sáng tạo

Cho hình thang cân

Quảng cáo

Đề bài

Cho hình thang cân \(ABCD\)\(AB\) // \(CD\). Qua giao điểm \(E\) của \(AC\)\(BD\), ta vẽ đường thẳng song song với \(AB\) và cắt \(AD\), \(BC\) lần lượt tại \(F\)\(G\) (Hình 16). Chứng minh rằng \(EG\) là tia phân giác của góc \(CEB\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Chứng minh \(\widehat {{\rm{CEG}}} = \widehat {{\rm{BEG}}}\)

Lời giải chi tiết

\(EG\) // \(AB\) (gt)

suy ra \(\widehat {{\rm{CEG}}} = \widehat {{\rm{CAB}}}\) (đồng vị) và \(\widehat {{\rm{GEB}}} = \widehat {{\rm{EBA}}}\) (so le trong) (1)

Xét \(\Delta CAB\)\(\Delta DBA\) ta có:

\(AC = BD\) (tính chất hình thang cân)

\(BC = AD\) (tính chất hình thang cân)

\(AB\) chung

Suy ra \(\Delta CAB = \Delta DBA\) (c-c-c)

Suy ra \(\widehat {{\rm{CAB}}} = \widehat {{\rm{EBA}}}\) (hai góc tương ứng) (2)

Từ (1) và (2) suy ra \(\widehat {{\rm{CEG}}} = \widehat {{\rm{GEB}}}\)

Suy ra \(EG\) là phân giác của \(\widehat {{\rm{CEB}}}\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close